語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
The estimation of multidimensional i...
~
Zhang, Litong.
FindBook
Google Book
Amazon
博客來
The estimation of multidimensional item response theory models.
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
The estimation of multidimensional item response theory models./
作者:
Zhang, Litong.
面頁冊數:
94 p.
附註:
Adviser: Brian Habing.
Contained By:
Dissertation Abstracts International68-08B.
標題:
Statistics. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=3280371
ISBN:
9780549212287
The estimation of multidimensional item response theory models.
Zhang, Litong.
The estimation of multidimensional item response theory models.
- 94 p.
Adviser: Brian Habing.
Thesis (Ph.D.)--University of South Carolina, 2007.
The aim of the study is to find a theoretically justified method to estimate the item parameters, including the guessing parameter, for the compensatory Multidimensional Item Response Theory (MIRT) model. The Markov Chain Monte Carlo (MCMC) method is reproduced first in this study. Results show MCMC gives accurate estimation for the item discriminations and difficulties and fairly good estimation for the guessing parameters. However, its heavy computational burden is a major obstacle for practical application. Based on Classical Test Theory (CTT) and conditional covariance theory an initial estimation method for the item parameters is proposed, which gives good approximations of the item parameters as the starting points for the expectation-maximization method. This study then extends Tsutakawa's unidimensional IRT estimation method to two dimensions; and simulation results show the estimate for the Item Response Function (IRF) is accurate using the initial estimation results as prior information according to an Empirical Bayes method. Finally, a 5-parameter mixed bivariate normal distribution is proposed for the abilities in the Marginal Maximization Likelihood (MML) method.
ISBN: 9780549212287Subjects--Topical Terms:
517247
Statistics.
The estimation of multidimensional item response theory models.
LDR
:02040nam 2200265 a 45
001
943132
005
20110520
008
110520s2007 ||||||||||||||||| ||eng d
020
$a
9780549212287
035
$a
(UMI)AAI3280371
035
$a
AAI3280371
040
$a
UMI
$c
UMI
100
1
$a
Zhang, Litong.
$3
1267171
245
1 4
$a
The estimation of multidimensional item response theory models.
300
$a
94 p.
500
$a
Adviser: Brian Habing.
500
$a
Source: Dissertation Abstracts International, Volume: 68-08, Section: B, page: 5334.
502
$a
Thesis (Ph.D.)--University of South Carolina, 2007.
520
$a
The aim of the study is to find a theoretically justified method to estimate the item parameters, including the guessing parameter, for the compensatory Multidimensional Item Response Theory (MIRT) model. The Markov Chain Monte Carlo (MCMC) method is reproduced first in this study. Results show MCMC gives accurate estimation for the item discriminations and difficulties and fairly good estimation for the guessing parameters. However, its heavy computational burden is a major obstacle for practical application. Based on Classical Test Theory (CTT) and conditional covariance theory an initial estimation method for the item parameters is proposed, which gives good approximations of the item parameters as the starting points for the expectation-maximization method. This study then extends Tsutakawa's unidimensional IRT estimation method to two dimensions; and simulation results show the estimate for the Item Response Function (IRF) is accurate using the initial estimation results as prior information according to an Empirical Bayes method. Finally, a 5-parameter mixed bivariate normal distribution is proposed for the abilities in the Marginal Maximization Likelihood (MML) method.
590
$a
School code: 0202.
650
4
$a
Statistics.
$3
517247
690
$a
0463
710
2
$a
University of South Carolina.
$3
1017477
773
0
$t
Dissertation Abstracts International
$g
68-08B.
790
$a
0202
790
1 0
$a
Habing, Brian,
$e
advisor
791
$a
Ph.D.
792
$a
2007
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=3280371
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9112773
電子資源
11.線上閱覽_V
電子書
EB W9112773
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入