語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
On conditional discrete density esti...
~
Hsu, Yu-Sheng.
FindBook
Google Book
Amazon
博客來
On conditional discrete density estimation.
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
On conditional discrete density estimation./
作者:
Hsu, Yu-Sheng.
面頁冊數:
81 p.
附註:
Director: Robert H. Berk.
Contained By:
Dissertation Abstracts International51-07B.
標題:
Statistics. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=9034909
On conditional discrete density estimation.
Hsu, Yu-Sheng.
On conditional discrete density estimation.
- 81 p.
Director: Robert H. Berk.
Thesis (Ph.D.)--Rutgers The State University of New Jersey - New Brunswick, 1990.
The purpose of this paper is to deal with the conditional discrete density estimation problem motivated from the discrimination problem using both continuous and unordered discrete variables. Let $\underline X$ and $\underline Y$ denote the continuous and the unordered discrete variables respectively. Let Subjects--Topical Terms:
517247
Statistics.
On conditional discrete density estimation.
LDR
:02749nam 2200253 a 45
001
939858
005
20110517
008
110517s1990 ||||||||||||||||| ||eng d
035
$a
(UMI)AAI9034909
035
$a
AAI9034909
040
$a
UMI
$c
UMI
100
1
$a
Hsu, Yu-Sheng.
$3
1263970
245
1 0
$a
On conditional discrete density estimation.
300
$a
81 p.
500
$a
Director: Robert H. Berk.
500
$a
Source: Dissertation Abstracts International, Volume: 51-07, Section: B, page: 3443.
502
$a
Thesis (Ph.D.)--Rutgers The State University of New Jersey - New Brunswick, 1990.
520
$a
The purpose of this paper is to deal with the conditional discrete density estimation problem motivated from the discrimination problem using both continuous and unordered discrete variables. Let $\underline X$ and $\underline Y$ denote the continuous and the unordered discrete variables respectively. Let
$f
(\underline x, \underline y)$ denote the joint density of $\underline X$ and $\underline Y$, and $\ f\sb{j,n\sb j}(\underline x, \underline y)$ denote an estimator of
$f
\sb j(\underline x, \underline y)$ of population $\Pi\sb j$ based on a sample $(\underline x\sbsp{1}{(j)}, \underline y\sbsp{1}{(j)}, \..., (\underline x\sbsp{n\sb j}{(j)}, \underline y\sbsp{n\sb j}{(j)})$, 1 $\leq$
$j
$ $\leq$
$p
$. Then a new observation $(\underline x\sb0, \underline y\sb0)$ will be allocated to population $\Pi\sb i$ if$$\ f\sb{i,n\sb i}(\underline x, \underline y) = \max\sb{1\le j\le p}\ f\sb{j,n\sb j}(\underline x, \underline y).$
$i
f m estimators assume the maximum then ($\underline x\sb0, \underline y\sb0$) will be allocated to one of those m populations with equal probability. Since(UNFORMATTED TABLE OR EQUATION FOLLOWS)$$\eqalignno{f(\underline x, \underline y)&= f(\underline x\vert\underline y)f(\underline y),&(0.1)\cr&= f(\underline y\vert\underline x)f(\underline x),&(0.2)\cr}$$(TABLE/EQUATION ENDS)there are two approaches to estimate
$f
(\underline x, \underline y)$. Some statisticians use formula (0.1), assuming a parametric model on $\underline X\vert\underline Y$. We will use formula (0.2) and the approach will be nonparametric. Since good estimators of
$f
(\underline x)$ are well known, our discussion will be restricted to the estimation of
$f
(\underline y\vert\underline x)$. Our estimators smooth the well known nearest neighbor estimator and the kernel estimator. The consistency, asymptotic normality and optimality in the sense of Hajek (1970) of our estimators are given.
590
$a
School code: 0190.
650
4
$a
Statistics.
$3
517247
690
$a
0463
710
2
$a
Rutgers The State University of New Jersey - New Brunswick.
$3
1017590
773
0
$t
Dissertation Abstracts International
$g
51-07B.
790
$a
0190
790
1 0
$a
Berk, Robert H.,
$e
advisor
791
$a
Ph.D.
792
$a
1990
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=9034909
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9109844
電子資源
11.線上閱覽_V
電子書
EB W9109844
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入