Language:
English
繁體中文
Help
回圖書館首頁
手機版館藏查詢
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
Degenerate nonlinear parabolic bound...
~
Lin, Chin-Yuan.
Linked to FindBook
Google Book
Amazon
博客來
Degenerate nonlinear parabolic boundary value problems.
Record Type:
Language materials, printed : Monograph/item
Title/Author:
Degenerate nonlinear parabolic boundary value problems./
Author:
Lin, Chin-Yuan.
Description:
71 p.
Notes:
Chairman: J. A. Goldstein.
Contained By:
Dissertation Abstracts International49-05B.
Subject:
Mathematics. -
Online resource:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=8811314
Degenerate nonlinear parabolic boundary value problems.
Lin, Chin-Yuan.
Degenerate nonlinear parabolic boundary value problems.
- 71 p.
Chairman: J. A. Goldstein.
Thesis (Ph.D.)--Tulane University, 1987.
Global existence and uniqueness results are established for mixed initial-boundary value problems for degenerate nonlinear parabolic equations of the type ${\partial {\rm u}}\over{\partial {\rm t}}$ = $\phi$(x,$\nabla)$\DeltaSubjects--Topical Terms:
515831
Mathematics.
Degenerate nonlinear parabolic boundary value problems.
LDR
:01836nam 2200253 a 45
001
939852
005
20110517
008
110517s1987 ||||||||||||||||| ||eng d
035
$a
(UMI)AAI8811314
035
$a
AAI8811314
040
$a
UMI
$c
UMI
100
1
$a
Lin, Chin-Yuan.
$3
1263964
245
1 0
$a
Degenerate nonlinear parabolic boundary value problems.
300
$a
71 p.
500
$a
Chairman: J. A. Goldstein.
500
$a
Source: Dissertation Abstracts International, Volume: 49-05, Section: B, page: 1752.
502
$a
Thesis (Ph.D.)--Tulane University, 1987.
520
$a
Global existence and uniqueness results are established for mixed initial-boundary value problems for degenerate nonlinear parabolic equations of the type ${\partial {\rm u}}\over{\partial {\rm t}}$ = $\phi$(x,$\nabla
$u
)$\Delta
$u
+ f(x,u,$\nabla
$u
) where u = u(x,t) is real-valued, x is in a smooth bounded domain $\Omega$ in $\IR\sp{\rm n}$, and t $\geq$ 0. By "degenerate" we mean that $\phi$(x,$\xi)$ $>$ 0 for x $\epsilon\Omega$ and $\xi\ \epsilon\ \IR\sp{\rm n}$ but possibly $\phi$(x,$\xi)$ = 0 for x $\epsilon\ \partial\ \Omega$. We also consider a variety of boundary conditions, which can be either linear (e.g. Dirichlet, Neumann, Robin or periodic) or nonlinear, in which case it takes the form $-{\partial{\rm u}\over\partial{\rm n}}$ $\epsilon$ $\beta$(u(x,t)) for x $\epsilon\ \partial\Omega$, t $\geq$ 0. Here $\nu$ is the unit outer normal to $\partial\Omega$ at x and $\beta$ is a maximal monotone graph in $\IR$ x $\IR$ containing (0,0). In particular, both the equation and the boundary condition can be nonlinear.
590
$a
School code: 0235.
650
4
$a
Mathematics.
$3
515831
690
$a
0405
710
2
$a
Tulane University.
$3
1019475
773
0
$t
Dissertation Abstracts International
$g
49-05B.
790
$a
0235
790
1 0
$a
Goldstein, J. A.,
$e
advisor
791
$a
Ph.D.
792
$a
1987
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=8811314
based on 0 review(s)
Location:
ALL
電子資源
Year:
Volume Number:
Items
1 records • Pages 1 •
1
Inventory Number
Location Name
Item Class
Material type
Call number
Usage Class
Loan Status
No. of reservations
Opac note
Attachments
W9109838
電子資源
11.線上閱覽_V
電子書
EB W9109838
一般使用(Normal)
On shelf
0
1 records • Pages 1 •
1
Multimedia
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login