語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回上頁
切換:
標籤
|
MARC模式
|
ISBD
The geometry of cubic hypersurfaces
~
Huybrechts, Daniel.
FindBook
Google Book
Amazon
博客來
The geometry of cubic hypersurfaces
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
The geometry of cubic hypersurfaces/ Daniel Huybrechts.
作者:
Huybrechts, Daniel.
出版者:
Cambridge ;Cambridge University Press, : 2023.,
面頁冊數:
xvii, 441 p. :ill., digital ;24 cm.
附註:
Title from publisher's bibliographic system (viewed on 15 Jun 2023).
內容註:
Basic facts -- Fano varieties of lines -- Moduli spaces -- Cubic surfaces -- Cubic threefolds -- Cubic fourfolds -- Derived categories of cubic hypersurfaces.
標題:
Surfaces, Cubic. -
電子資源:
https://doi.org/10.1017/9781009280020
ISBN:
9781009280020
The geometry of cubic hypersurfaces
Huybrechts, Daniel.
The geometry of cubic hypersurfaces
[electronic resource] /Daniel Huybrechts. - Cambridge ;Cambridge University Press,2023. - xvii, 441 p. :ill., digital ;24 cm. - Cambridge studies in advanced mathematics ;206.. - Cambridge studies in advanced mathematics ;206..
Title from publisher's bibliographic system (viewed on 15 Jun 2023).
Basic facts -- Fano varieties of lines -- Moduli spaces -- Cubic surfaces -- Cubic threefolds -- Cubic fourfolds -- Derived categories of cubic hypersurfaces.
Cubic hypersurfaces are described by almost the simplest possible polynomial equations, yet their behaviour is rich enough to demonstrate many of the central challenges in algebraic geometry. With exercises and detailed references to the wider literature, this thorough text introduces cubic hypersurfaces and all the techniques needed to study them. The book starts by laying the foundations for the study of cubic hypersurfaces and of many other algebraic varieties, covering cohomology and Hodge theory of hypersurfaces, moduli spaces of those and Fano varieties of linear subspaces contained in hypersurfaces. The next three chapters examine the general machinery applied to cubic hypersurfaces of dimension two, three, and four. Finally, the author looks at cubic hypersurfaces from a categorical point of view and describes motivic features. Based on the author's lecture courses, this is an ideal text for graduate students as well as an invaluable reference for researchers in algebraic geometry.
ISBN: 9781009280020Subjects--Topical Terms:
633143
Surfaces, Cubic.
LC Class. No.: QA573 / .H89 2023
Dewey Class. No.: 516.352
The geometry of cubic hypersurfaces
LDR
:02067nmm a2200277 a 4500
001
2415241
003
UkCbUP
005
20230615022027.0
006
m d
007
cr nn 008maaau
008
260207s2023 enk o 1 0 eng d
020
$a
9781009280020
$q
(electronic bk.)
020
$a
9781009280006
$q
(hardback)
035
$a
CR9781009280020
040
$a
UkCbUP
$b
eng
$c
UkCbUP
$d
GP
041
0
$a
eng
050
0 0
$a
QA573
$b
.H89 2023
082
0 0
$a
516.352
$2
23
090
$a
QA573
$b
.H987 2023
100
1
$a
Huybrechts, Daniel.
$3
711408
245
1 4
$a
The geometry of cubic hypersurfaces
$h
[electronic resource] /
$c
Daniel Huybrechts.
260
$a
Cambridge ;
$a
New York, NY :
$b
Cambridge University Press,
$c
2023.
300
$a
xvii, 441 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Cambridge studies in advanced mathematics ;
$v
206.
500
$a
Title from publisher's bibliographic system (viewed on 15 Jun 2023).
505
0
$a
Basic facts -- Fano varieties of lines -- Moduli spaces -- Cubic surfaces -- Cubic threefolds -- Cubic fourfolds -- Derived categories of cubic hypersurfaces.
520
$a
Cubic hypersurfaces are described by almost the simplest possible polynomial equations, yet their behaviour is rich enough to demonstrate many of the central challenges in algebraic geometry. With exercises and detailed references to the wider literature, this thorough text introduces cubic hypersurfaces and all the techniques needed to study them. The book starts by laying the foundations for the study of cubic hypersurfaces and of many other algebraic varieties, covering cohomology and Hodge theory of hypersurfaces, moduli spaces of those and Fano varieties of linear subspaces contained in hypersurfaces. The next three chapters examine the general machinery applied to cubic hypersurfaces of dimension two, three, and four. Finally, the author looks at cubic hypersurfaces from a categorical point of view and describes motivic features. Based on the author's lecture courses, this is an ideal text for graduate students as well as an invaluable reference for researchers in algebraic geometry.
650
0
$a
Surfaces, Cubic.
$3
633143
650
0
$a
Hypersurfaces.
$3
704887
650
0
$a
Equations, Cubic.
$3
2139540
650
0
$a
Geometry, Algebraic
$3
700347
830
0
$a
Cambridge studies in advanced mathematics ;
$v
206.
$3
3792533
856
4 0
$u
https://doi.org/10.1017/9781009280020
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9520686
電子資源
11.線上閱覽_V
電子書
EB QA573 .H89 2023
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入