Language:
English
繁體中文
Help
回圖書館首頁
手機版館藏查詢
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
Global logarithmic deformation theory
~
Felten, Simon.
Linked to FindBook
Google Book
Amazon
博客來
Global logarithmic deformation theory
Record Type:
Electronic resources : Monograph/item
Title/Author:
Global logarithmic deformation theory / by Simon Felten.
Author:
Felten, Simon.
Published:
Cham :Springer Nature Switzerland : : 2025.,
Description:
xlviii, 629 p. :ill., digital ;24 cm.
[NT 15003449]:
Chapter 1. Introduction -- Chapter 2. Related Works -- Part I. Abstract Unobstructedness Theorems -- Chapter 3. Algebraic Structures -- Chapter 4. Gauge Transforms -- Chapter 5. The Extended Maurer-Cartan Equations -- Chapter 6. The Two Abstract Unobstructedness Theorems -- Part II. Logarithmic Geometry -- Chapter 7. Logarithmic Geometry -- Chapter 8. Families of Singular Log Schemes -- Chapter 9. Toroidal Crossing Spaces -- Part III. Global Deformation Theory -- Chapter 10. Generically Log Smooth Deformations -- Chapter 11. Deformations with a Vector Bundle -- Chapter 12. Geometric Families of P-Algebras -- Chapter 13. The Characteristic Algebra -- Part IV. Applications -- Chapter 14. Log Toroidal Families of Gross-Siebert Type -- Chapter 15. The Gerstenhaber Calculus of Log Toroidal Families -- Chapter 16. Deformations of Line Bundles -- Chapter 17. Algebraic Deformations -- Chapter 18. Modifications of the Log Structure.
Contained By:
Springer Nature eBook
Subject:
Logarithmic functions. -
Online resource:
https://doi.org/10.1007/978-3-031-98751-9
ISBN:
9783031987519
Global logarithmic deformation theory
Felten, Simon.
Global logarithmic deformation theory
[electronic resource] /by Simon Felten. - Cham :Springer Nature Switzerland :2025. - xlviii, 629 p. :ill., digital ;24 cm. - Lecture notes in mathematics,v. 23731617-9692 ;. - Lecture notes in mathematics ;v. 2373..
Chapter 1. Introduction -- Chapter 2. Related Works -- Part I. Abstract Unobstructedness Theorems -- Chapter 3. Algebraic Structures -- Chapter 4. Gauge Transforms -- Chapter 5. The Extended Maurer-Cartan Equations -- Chapter 6. The Two Abstract Unobstructedness Theorems -- Part II. Logarithmic Geometry -- Chapter 7. Logarithmic Geometry -- Chapter 8. Families of Singular Log Schemes -- Chapter 9. Toroidal Crossing Spaces -- Part III. Global Deformation Theory -- Chapter 10. Generically Log Smooth Deformations -- Chapter 11. Deformations with a Vector Bundle -- Chapter 12. Geometric Families of P-Algebras -- Chapter 13. The Characteristic Algebra -- Part IV. Applications -- Chapter 14. Log Toroidal Families of Gross-Siebert Type -- Chapter 15. The Gerstenhaber Calculus of Log Toroidal Families -- Chapter 16. Deformations of Line Bundles -- Chapter 17. Algebraic Deformations -- Chapter 18. Modifications of the Log Structure.
This monograph provides the first systematic treatment of the logarithmic Bogomolov-Tian-Todorov theorem. Providing a new perspective on classical results, this theorem guarantees that logarithmic Calabi-Yau spaces have unobstructed deformations. Part I develops the deformation theory of curved Batalin-Vilkovisky calculi and the abstract unobstructedness theorems which hold in quasi-perfect curved Batalin-Vilkovisky calculi. Part II presents background material on logarithmic geometry, families of singular log schemes, and toroidal crossing spaces. Part III establishes the connection between the geometric deformation theory of log schemes and the purely algebraic deformation theory of curved Batalin-Vilkovisky calculi. The last Part IV explores applications to the Gross-Siebert program, to deformation problems of log smooth and log toroidal log Calabi-Yau spaces, as well as to deformations of line bundles and deformations of log Fano spaces. Along the way, a comprehensive introduction to the logarithmic geometry used in the Gross-Siebert program is given. This monograph will be useful for graduate students and researchers working in algebraic and complex geometry, in particular in the study of deformation theory, degenerations, moduli spaces, and mirror symmetry.
ISBN: 9783031987519
Standard No.: 10.1007/978-3-031-98751-9doiSubjects--Topical Terms:
705309
Logarithmic functions.
LC Class. No.: QA342
Dewey Class. No.: 512.922
Global logarithmic deformation theory
LDR
:03244nmm a2200337 a 4500
001
2414914
003
DE-He213
005
20250926130508.0
006
m d
007
cr nn 008maaau
008
260205s2025 sz s 0 eng d
020
$a
9783031987519
$q
(electronic bk.)
020
$a
9783031987502
$q
(paper)
024
7
$a
10.1007/978-3-031-98751-9
$2
doi
035
$a
978-3-031-98751-9
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA342
072
7
$a
PBMW
$2
bicssc
072
7
$a
MAT012010
$2
bisacsh
072
7
$a
PBMW
$2
thema
082
0 4
$a
512.922
$2
23
090
$a
QA342
$b
.F325 2025
100
1
$a
Felten, Simon.
$3
3791938
245
1 0
$a
Global logarithmic deformation theory
$h
[electronic resource] /
$c
by Simon Felten.
260
$a
Cham :
$b
Springer Nature Switzerland :
$b
Imprint: Springer,
$c
2025.
300
$a
xlviii, 629 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Lecture notes in mathematics,
$x
1617-9692 ;
$v
v. 2373
505
0
$a
Chapter 1. Introduction -- Chapter 2. Related Works -- Part I. Abstract Unobstructedness Theorems -- Chapter 3. Algebraic Structures -- Chapter 4. Gauge Transforms -- Chapter 5. The Extended Maurer-Cartan Equations -- Chapter 6. The Two Abstract Unobstructedness Theorems -- Part II. Logarithmic Geometry -- Chapter 7. Logarithmic Geometry -- Chapter 8. Families of Singular Log Schemes -- Chapter 9. Toroidal Crossing Spaces -- Part III. Global Deformation Theory -- Chapter 10. Generically Log Smooth Deformations -- Chapter 11. Deformations with a Vector Bundle -- Chapter 12. Geometric Families of P-Algebras -- Chapter 13. The Characteristic Algebra -- Part IV. Applications -- Chapter 14. Log Toroidal Families of Gross-Siebert Type -- Chapter 15. The Gerstenhaber Calculus of Log Toroidal Families -- Chapter 16. Deformations of Line Bundles -- Chapter 17. Algebraic Deformations -- Chapter 18. Modifications of the Log Structure.
520
$a
This monograph provides the first systematic treatment of the logarithmic Bogomolov-Tian-Todorov theorem. Providing a new perspective on classical results, this theorem guarantees that logarithmic Calabi-Yau spaces have unobstructed deformations. Part I develops the deformation theory of curved Batalin-Vilkovisky calculi and the abstract unobstructedness theorems which hold in quasi-perfect curved Batalin-Vilkovisky calculi. Part II presents background material on logarithmic geometry, families of singular log schemes, and toroidal crossing spaces. Part III establishes the connection between the geometric deformation theory of log schemes and the purely algebraic deformation theory of curved Batalin-Vilkovisky calculi. The last Part IV explores applications to the Gross-Siebert program, to deformation problems of log smooth and log toroidal log Calabi-Yau spaces, as well as to deformations of line bundles and deformations of log Fano spaces. Along the way, a comprehensive introduction to the logarithmic geometry used in the Gross-Siebert program is given. This monograph will be useful for graduate students and researchers working in algebraic and complex geometry, in particular in the study of deformation theory, degenerations, moduli spaces, and mirror symmetry.
650
0
$a
Logarithmic functions.
$3
705309
650
1 4
$a
Algebraic Geometry.
$3
893861
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer Nature eBook
830
0
$a
Lecture notes in mathematics ;
$v
v. 2373.
$3
3791939
856
4 0
$u
https://doi.org/10.1007/978-3-031-98751-9
950
$a
Mathematics and Statistics (SpringerNature-11649)
based on 0 review(s)
Location:
ALL
電子資源
Year:
Volume Number:
Items
1 records • Pages 1 •
1
Inventory Number
Location Name
Item Class
Material type
Call number
Usage Class
Loan Status
No. of reservations
Opac note
Attachments
W9520369
電子資源
11.線上閱覽_V
電子書
EB QA342
一般使用(Normal)
On shelf
0
1 records • Pages 1 •
1
Multimedia
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login