語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Big data analytics in energy pipelin...
~
Hussain, Muhammad.
FindBook
Google Book
Amazon
博客來
Big data analytics in energy pipeline integrity management
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Big data analytics in energy pipeline integrity management / by Muhammad Hussain, Tieling Zhang.
作者:
Hussain, Muhammad.
其他作者:
Zhang, Tieling.
出版者:
Singapore :Springer Nature Singapore : : 2025.,
面頁冊數:
xxv, 330 p. :ill., digital ;24 cm.
內容註:
Chapter 1: Introduction -- Chapter 2: Fundamentals of Big Data Analytics in the Energy Sector -- Chapter 3: Data Collection Methods in Pipeline Integrity Management -- Chapter 4: Data Integration and Preprocessing Techniques -- Chapter 5: Literature Review -- Chapter 6: Using Big Data Analytics in PIMS -- Chapter 7: Data Quality Issues in Model Testing -- Chapter 8: Energy Pipeline Defect Growth Prediction Using Degradation Modelling -- Chapter 9: Predictive Maintenance and Pipeline Integrity -- Chapter 10: Machine Learning Applications in Pipeline Integrity Management -- Chapter 11: Risk Assessment and Big Data Analytics -- Chapter 12: Data Visualization and Reporting for Pipeline Integrity.
Contained By:
Springer Nature eBook
標題:
Pipelines - Maintenance and repair -
電子資源:
https://doi.org/10.1007/978-981-96-8019-1
ISBN:
9789819680191
Big data analytics in energy pipeline integrity management
Hussain, Muhammad.
Big data analytics in energy pipeline integrity management
[electronic resource] /by Muhammad Hussain, Tieling Zhang. - Singapore :Springer Nature Singapore :2025. - xxv, 330 p. :ill., digital ;24 cm. - Lecture notes in energy,v. 1042195-1292 ;. - Lecture notes in energy ;v. 104..
Chapter 1: Introduction -- Chapter 2: Fundamentals of Big Data Analytics in the Energy Sector -- Chapter 3: Data Collection Methods in Pipeline Integrity Management -- Chapter 4: Data Integration and Preprocessing Techniques -- Chapter 5: Literature Review -- Chapter 6: Using Big Data Analytics in PIMS -- Chapter 7: Data Quality Issues in Model Testing -- Chapter 8: Energy Pipeline Defect Growth Prediction Using Degradation Modelling -- Chapter 9: Predictive Maintenance and Pipeline Integrity -- Chapter 10: Machine Learning Applications in Pipeline Integrity Management -- Chapter 11: Risk Assessment and Big Data Analytics -- Chapter 12: Data Visualization and Reporting for Pipeline Integrity.
This book offers a comprehensive exploration of the integration of Big Data analytics into the management of energy pipeline integrity. Its primary aim is to enhance pipeline safety, reduce operational costs, and ensure long-term sustainability by leveraging data-driven technologies in the monitoring and maintenance of pipelines. Aimed at professionals and researchers in the energy, oil, and gas sectors, as well as those involved in infrastructure management and data science, the book presents how emerging technologies, such as Big Data, Machine Learning (ML), Internet of Things (IoT), and Artificial Intelligence (AI), can revolutionize pipeline integrity management systems (PIMS).
ISBN: 9789819680191
Standard No.: 10.1007/978-981-96-8019-1doiSubjects--Topical Terms:
3791478
Pipelines
--Maintenance and repair
LC Class. No.: TA660.P55
Dewey Class. No.: 621.86720288
Big data analytics in energy pipeline integrity management
LDR
:02439nmm a2200337 a 4500
001
2414688
003
DE-He213
005
20250926131954.0
006
m d
007
cr nn 008maaau
008
260205s2025 si s 0 eng d
020
$a
9789819680191
$q
(electronic bk.)
020
$a
9789819680184
$q
(paper)
024
7
$a
10.1007/978-981-96-8019-1
$2
doi
035
$a
978-981-96-8019-1
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
TA660.P55
072
7
$a
RN
$2
bicssc
072
7
$a
BUS070040
$2
bisacsh
072
7
$a
RN
$2
thema
082
0 4
$a
621.86720288
$2
23
090
$a
TA660.P55
$b
H972 2025
100
1
$a
Hussain, Muhammad.
$3
3791475
245
1 0
$a
Big data analytics in energy pipeline integrity management
$h
[electronic resource] /
$c
by Muhammad Hussain, Tieling Zhang.
260
$a
Singapore :
$b
Springer Nature Singapore :
$b
Imprint: Springer,
$c
2025.
300
$a
xxv, 330 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Lecture notes in energy,
$x
2195-1292 ;
$v
v. 104
505
0
$a
Chapter 1: Introduction -- Chapter 2: Fundamentals of Big Data Analytics in the Energy Sector -- Chapter 3: Data Collection Methods in Pipeline Integrity Management -- Chapter 4: Data Integration and Preprocessing Techniques -- Chapter 5: Literature Review -- Chapter 6: Using Big Data Analytics in PIMS -- Chapter 7: Data Quality Issues in Model Testing -- Chapter 8: Energy Pipeline Defect Growth Prediction Using Degradation Modelling -- Chapter 9: Predictive Maintenance and Pipeline Integrity -- Chapter 10: Machine Learning Applications in Pipeline Integrity Management -- Chapter 11: Risk Assessment and Big Data Analytics -- Chapter 12: Data Visualization and Reporting for Pipeline Integrity.
520
$a
This book offers a comprehensive exploration of the integration of Big Data analytics into the management of energy pipeline integrity. Its primary aim is to enhance pipeline safety, reduce operational costs, and ensure long-term sustainability by leveraging data-driven technologies in the monitoring and maintenance of pipelines. Aimed at professionals and researchers in the energy, oil, and gas sectors, as well as those involved in infrastructure management and data science, the book presents how emerging technologies, such as Big Data, Machine Learning (ML), Internet of Things (IoT), and Artificial Intelligence (AI), can revolutionize pipeline integrity management systems (PIMS).
650
0
$a
Pipelines
$x
Maintenance and repair
$x
Data processing.
$3
3791478
650
0
$a
Big data.
$3
2045508
650
1 4
$a
Energy Policy, Economics and Management.
$3
1532761
650
2 4
$a
Big Data.
$3
3134868
650
2 4
$a
Internet of Things.
$3
3538511
650
2 4
$a
Artificial Intelligence.
$3
769149
650
2 4
$a
Machine Learning.
$3
3382522
650
2 4
$a
Risk Management.
$3
608953
700
1
$a
Zhang, Tieling.
$3
3791476
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer Nature eBook
830
0
$a
Lecture notes in energy ;
$v
v. 104.
$3
3791477
856
4 0
$u
https://doi.org/10.1007/978-981-96-8019-1
950
$a
Energy (SpringerNature-40367)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9520143
電子資源
11.線上閱覽_V
電子書
EB TA660.P55
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入