Language:
English
繁體中文
Help
回圖書館首頁
手機版館藏查詢
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
The geometry and topology of coxeter...
~
Davis, Michael.
Linked to FindBook
Google Book
Amazon
博客來
The geometry and topology of coxeter groups
Record Type:
Electronic resources : Monograph/item
Title/Author:
The geometry and topology of coxeter groups/ by Michael W. Davis.
Author:
Davis, Michael.
Published:
Cham :Springer Nature Switzerland : : 2025.,
Description:
xxiii, 582 p. :ill. (some col.), digital ;24 cm.
[NT 15003449]:
Chapter 1. Introduction and preview -- Chapter 2. Some basic notions in geometric group theory -- Chapter 3. Coxeter groups -- Chapter 4. More combinatorics of Coxeter groups -- Chapter 5. The basic construction -- Chapter 6. Geometric reflection groups -- Chapter 7. The complex E -- Chapter 8. The algebraic topology of U and of E -- Chapter 9. The fundamental group and the fundamental group at infinity -- Chapter 10. Actions on manifolds -- Chapter 11. The reflection group trick -- Chapter 12. E is CAT(0) -- Chapter 13. Rigidity -- Chapter 14. Free quotients and surface subgroups -- Chapter 15. Another look at (co)homology -- Chapter 16. The Euler characteristic -- Chapter 17. Growth series -- Chapter 18. Artin Groups -- Chapter 19. L2-Betti numbers of Artin groups -- Chapter 20. Buildings -- Chapter 21. Hecke - von Neumann algebras -- Chapter 22. Weighted L2- (co)homology.
Contained By:
Springer Nature eBook
Subject:
Coxeter groups. -
Online resource:
https://doi.org/10.1007/978-3-031-91303-7
ISBN:
9783031913037
The geometry and topology of coxeter groups
Davis, Michael.
The geometry and topology of coxeter groups
[electronic resource] /by Michael W. Davis. - Second edition. - Cham :Springer Nature Switzerland :2025. - xxiii, 582 p. :ill. (some col.), digital ;24 cm. - Springer monographs in mathematics,2196-9922. - Springer monographs in mathematics..
Chapter 1. Introduction and preview -- Chapter 2. Some basic notions in geometric group theory -- Chapter 3. Coxeter groups -- Chapter 4. More combinatorics of Coxeter groups -- Chapter 5. The basic construction -- Chapter 6. Geometric reflection groups -- Chapter 7. The complex E -- Chapter 8. The algebraic topology of U and of E -- Chapter 9. The fundamental group and the fundamental group at infinity -- Chapter 10. Actions on manifolds -- Chapter 11. The reflection group trick -- Chapter 12. E is CAT(0) -- Chapter 13. Rigidity -- Chapter 14. Free quotients and surface subgroups -- Chapter 15. Another look at (co)homology -- Chapter 16. The Euler characteristic -- Chapter 17. Growth series -- Chapter 18. Artin Groups -- Chapter 19. L2-Betti numbers of Artin groups -- Chapter 20. Buildings -- Chapter 21. Hecke - von Neumann algebras -- Chapter 22. Weighted L2- (co)homology.
This book, now in a revised and extended second edition, offers an in-depth account of Coxeter groups through the perspective of geometric group theory. It examines the connections between Coxeter groups and major open problems in topology related to aspherical manifolds, such as the Euler Characteristic Conjecture and the Borel and Singer Conjectures. The book also discusses key topics in geometric group theory and topology, including Hopf's theory of ends, contractible manifolds and homology spheres, the Poincaré Conjecture, and Gromov's theory of CAT(0) spaces and groups. In addition, this second edition includes new chapters on Artin groups and their Betti numbers. Written by a leading expert, the book is an authoritative reference on the subject.
ISBN: 9783031913037
Standard No.: 10.1007/978-3-031-91303-7doiSubjects--Topical Terms:
752055
Coxeter groups.
LC Class. No.: QA183
Dewey Class. No.: 512.2
The geometry and topology of coxeter groups
LDR
:02717nmm a2200349 a 4500
001
2414010
003
DE-He213
005
20250731130734.0
006
m d
007
cr nn 008maaau
008
260205s2025 sz s 0 eng d
020
$a
9783031913037
$q
(electronic bk.)
020
$a
9783031913020
$q
(paper)
024
7
$a
10.1007/978-3-031-91303-7
$2
doi
035
$a
978-3-031-91303-7
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA183
072
7
$a
PBG
$2
bicssc
072
7
$a
MAT002010
$2
bisacsh
072
7
$a
PBG
$2
thema
082
0 4
$a
512.2
$2
23
090
$a
QA183
$b
.D263 2025
100
1
$a
Davis, Michael.
$3
602752
245
1 4
$a
The geometry and topology of coxeter groups
$h
[electronic resource] /
$c
by Michael W. Davis.
250
$a
Second edition.
260
$a
Cham :
$b
Springer Nature Switzerland :
$b
Imprint: Springer,
$c
2025.
300
$a
xxiii, 582 p. :
$b
ill. (some col.), digital ;
$c
24 cm.
490
1
$a
Springer monographs in mathematics,
$x
2196-9922
505
0
$a
Chapter 1. Introduction and preview -- Chapter 2. Some basic notions in geometric group theory -- Chapter 3. Coxeter groups -- Chapter 4. More combinatorics of Coxeter groups -- Chapter 5. The basic construction -- Chapter 6. Geometric reflection groups -- Chapter 7. The complex E -- Chapter 8. The algebraic topology of U and of E -- Chapter 9. The fundamental group and the fundamental group at infinity -- Chapter 10. Actions on manifolds -- Chapter 11. The reflection group trick -- Chapter 12. E is CAT(0) -- Chapter 13. Rigidity -- Chapter 14. Free quotients and surface subgroups -- Chapter 15. Another look at (co)homology -- Chapter 16. The Euler characteristic -- Chapter 17. Growth series -- Chapter 18. Artin Groups -- Chapter 19. L2-Betti numbers of Artin groups -- Chapter 20. Buildings -- Chapter 21. Hecke - von Neumann algebras -- Chapter 22. Weighted L2- (co)homology.
520
$a
This book, now in a revised and extended second edition, offers an in-depth account of Coxeter groups through the perspective of geometric group theory. It examines the connections between Coxeter groups and major open problems in topology related to aspherical manifolds, such as the Euler Characteristic Conjecture and the Borel and Singer Conjectures. The book also discusses key topics in geometric group theory and topology, including Hopf's theory of ends, contractible manifolds and homology spheres, the Poincaré Conjecture, and Gromov's theory of CAT(0) spaces and groups. In addition, this second edition includes new chapters on Artin groups and their Betti numbers. Written by a leading expert, the book is an authoritative reference on the subject.
650
0
$a
Coxeter groups.
$3
752055
650
0
$a
Geometric group theory.
$3
745240
650
1 4
$a
Group Theory and Generalizations.
$3
893889
650
2 4
$a
Manifolds and Cell Complexes.
$3
3538507
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer Nature eBook
830
0
$a
Springer monographs in mathematics.
$3
1535313
856
4 0
$u
https://doi.org/10.1007/978-3-031-91303-7
950
$a
Mathematics and Statistics (SpringerNature-11649)
based on 0 review(s)
Location:
ALL
電子資源
Year:
Volume Number:
Items
1 records • Pages 1 •
1
Inventory Number
Location Name
Item Class
Material type
Call number
Usage Class
Loan Status
No. of reservations
Opac note
Attachments
W9519465
電子資源
11.線上閱覽_V
電子書
EB QA183
一般使用(Normal)
On shelf
0
1 records • Pages 1 •
1
Multimedia
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login