Geometry and non-convex optimization
Pardalos, P. M.

Linked to FindBook      Google Book      Amazon      博客來     
  • Geometry and non-convex optimization
  • Record Type: Electronic resources : Monograph/item
    Title/Author: Geometry and non-convex optimization/ edited by Panos M. Pardalos, Themistocles M. Rassias.
    other author: Pardalos, P. M.
    Published: Cham :Springer Nature Switzerland : : 2025.,
    Description: xiv, 895 p. :ill. (some col.), digital ;24 cm.
    [NT 15003449]: Preface -- Chapter 1 Hermite-Hadamard Like Inequalities Involving Generalized Bi-Convex Functions -- Chapter 2 Some properties of Barrelled and of Bornological locally convex spaces over an arbitrary complete valued field -- Chapter 3 Bounds for the Unweighted Jensen's Gap of Absolutely Continuous Functions -- Chapter 4 Test Instances for Multiobjective Mixed-Integer Nonlinear Optimization -- Chapter 5 A trace operator for weighted Sobolev spaces -- Chapter 6 Common fixed point results for Meir-Keeler type contraction mappings -- Chapter 7 Optimum Statistical Analysis on Sphere Surface -- Chapter 8 New Generalized Ostrowski Type Fractional Integral Inequalities -- Chapter 9 Genaralized Fractional Hilbert Type Integral Inequalities in Banach Spaces -- Chapter 10 Ternary derivation-homomorphism functional inequalities -- Chapter 11 C*-ternary biderivations and C*-ternary bihomomorphisms -- Chapter 12 A Survey of Erdős-Szekeres Products -- Chapter 13 Recent developments in general quasi variational inequality -- Chapter 14 General Variational Inequalities and Optimization -- Chapter 15 Characterizations and Set Theoretic Properties of Some Generalized Open and Fat Sets in Relator Spaces -- Chapter 16 Direct Continuity Properties of Relations in Relator Spaces -- Chapter 17 Variational Principles and Fixed Points in Symmetric Structures -- Chapter 18 Sequential Coercivity over Q-Ordered Q-Metric Spaces -- Chapter 19 A Hardy-Hilbert's Integral Inequality with the Internal Variables Involving Two Derivative Functions.
    Contained By: Springer Nature eBook
    Subject: Mathematical optimization. -
    Online resource: https://doi.org/10.1007/978-3-031-87057-6
    ISBN: 9783031870576
Location:  Year:  Volume Number: 
Items
  • 1 records • Pages 1 •
  • 1 records • Pages 1 •
Multimedia
Reviews
Export
pickup library
 
 
Change password
Login