Language:
English
繁體中文
Help
回圖書館首頁
手機版館藏查詢
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
Machine learning based optimization ...
~
Jalas, Sören.
Linked to FindBook
Google Book
Amazon
博客來
Machine learning based optimization of laser-plasma accelerators
Record Type:
Electronic resources : Monograph/item
Title/Author:
Machine learning based optimization of laser-plasma accelerators/ by Sören Jalas.
Author:
Jalas, Sören.
Published:
Cham :Springer Nature Switzerland : : 2025.,
Description:
xxxvii, 134 p. :ill. (chiefly color), digital ;24 cm.
Notes:
"Doctoral thesis accepted by Universität Hamburg, Hamburg, Germany."
[NT 15003449]:
Principles of Laser-Plasma Acceleration -- Bayesian Optimization -- Bayesian Optimization of Plasma Accelerator Simulations -- Experimental Setup: The LUX Laser-Plasma Accelerator -- Bayesian Optimization of a Laser-Plasma Accelerator -- Tuning Curves for a Laser-Plasma Accelerator -- Conclusion.
Contained By:
Springer Nature eBook
Subject:
Plasma accelerators. -
Online resource:
https://doi.org/10.1007/978-3-031-88083-4
ISBN:
9783031880834
Machine learning based optimization of laser-plasma accelerators
Jalas, Sören.
Machine learning based optimization of laser-plasma accelerators
[electronic resource] /by Sören Jalas. - Cham :Springer Nature Switzerland :2025. - xxxvii, 134 p. :ill. (chiefly color), digital ;24 cm. - Springer theses,2190-5061. - Springer theses..
"Doctoral thesis accepted by Universität Hamburg, Hamburg, Germany."
Principles of Laser-Plasma Acceleration -- Bayesian Optimization -- Bayesian Optimization of Plasma Accelerator Simulations -- Experimental Setup: The LUX Laser-Plasma Accelerator -- Bayesian Optimization of a Laser-Plasma Accelerator -- Tuning Curves for a Laser-Plasma Accelerator -- Conclusion.
This book explores the application of machine learning-based methods, particularly Bayesian optimization, within the realm of laser-plasma accelerators. The book involves the implementation of Bayesian optimization to fine tune the parameters of the lux accelerator, encompassing simulations and real-time experimentation. In combination, the methods presented in this book provide valuable tools for effectively managing the inherent complexity of LPAs, spanning from the design phase in simulations to real-time operation, potentially paving the way for LPAs to cater to a wide array of applications with diverse demands.
ISBN: 9783031880834
Standard No.: 10.1007/978-3-031-88083-4doiSubjects--Topical Terms:
2132619
Plasma accelerators.
LC Class. No.: QC718.5.M36
Dewey Class. No.: 538.6
Machine learning based optimization of laser-plasma accelerators
LDR
:02101nmm a2200361 a 4500
001
2413635
003
DE-He213
005
20250609142453.0
006
m d
007
cr nn 008maaau
008
260205s2025 sz s 0 eng d
020
$a
9783031880834
$q
(electronic bk.)
020
$a
9783031880827
$q
(paper)
024
7
$a
10.1007/978-3-031-88083-4
$2
doi
035
$a
978-3-031-88083-4
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QC718.5.M36
072
7
$a
PHFP
$2
bicssc
072
7
$a
SCI055000
$2
bisacsh
072
7
$a
PHFP
$2
thema
082
0 4
$a
538.6
$2
23
090
$a
QC718.5.M36
$b
J26 2025
100
1
$a
Jalas, Sören.
$3
3789852
245
1 0
$a
Machine learning based optimization of laser-plasma accelerators
$h
[electronic resource] /
$c
by Sören Jalas.
260
$a
Cham :
$b
Springer Nature Switzerland :
$b
Imprint: Springer,
$c
2025.
300
$a
xxxvii, 134 p. :
$b
ill. (chiefly color), digital ;
$c
24 cm.
338
$a
online resource
$b
cr
$2
rdacarrier
490
1
$a
Springer theses,
$x
2190-5061
500
$a
"Doctoral thesis accepted by Universität Hamburg, Hamburg, Germany."
505
0
$a
Principles of Laser-Plasma Acceleration -- Bayesian Optimization -- Bayesian Optimization of Plasma Accelerator Simulations -- Experimental Setup: The LUX Laser-Plasma Accelerator -- Bayesian Optimization of a Laser-Plasma Accelerator -- Tuning Curves for a Laser-Plasma Accelerator -- Conclusion.
520
$a
This book explores the application of machine learning-based methods, particularly Bayesian optimization, within the realm of laser-plasma accelerators. The book involves the implementation of Bayesian optimization to fine tune the parameters of the lux accelerator, encompassing simulations and real-time experimentation. In combination, the methods presented in this book provide valuable tools for effectively managing the inherent complexity of LPAs, spanning from the design phase in simulations to real-time operation, potentially paving the way for LPAs to cater to a wide array of applications with diverse demands.
650
0
$a
Plasma accelerators.
$3
2132619
650
0
$a
Machine learning.
$3
533906
650
1 4
$a
Plasma-based Accelerators.
$3
3599737
650
2 4
$a
Machine Learning.
$3
3382522
650
2 4
$a
Accelerator Physics.
$3
3596594
650
2 4
$a
Optimization.
$3
891104
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer Nature eBook
830
0
$a
Springer theses.
$3
1314442
856
4 0
$u
https://doi.org/10.1007/978-3-031-88083-4
950
$a
Physics and Astronomy (SpringerNature-11651)
based on 0 review(s)
Location:
ALL
電子資源
Year:
Volume Number:
Items
1 records • Pages 1 •
1
Inventory Number
Location Name
Item Class
Material type
Call number
Usage Class
Loan Status
No. of reservations
Opac note
Attachments
W9519090
電子資源
11.線上閱覽_V
電子書
EB QC718.5.M36
一般使用(Normal)
On shelf
0
1 records • Pages 1 •
1
Multimedia
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login