語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Prognostics and health management fo...
~
Liu, Hui.
FindBook
Google Book
Amazon
博客來
Prognostics and health management for intelligent electromechanical systems
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Prognostics and health management for intelligent electromechanical systems/ by Hui Liu, Fang Cheng, Yanfei Li.
作者:
Liu, Hui.
其他作者:
Cheng, Fang.
出版者:
Singapore :Springer Nature Singapore : : 2025.,
面頁冊數:
xxi, 208 p. :ill. (chiefly color), digital ;24 cm.
內容註:
Introduction -- Feature extraction of bearing vibration signal -- Ensemble intelligent diagnosis for bearing faults -- Deep learning based prediction for bearing remaining useful life.-Optimization based prediction for IGBT remaining useful life.
Contained By:
Springer Nature eBook
標題:
Electromechanical devices. -
電子資源:
https://doi.org/10.1007/978-981-96-7218-9
ISBN:
9789819672189
Prognostics and health management for intelligent electromechanical systems
Liu, Hui.
Prognostics and health management for intelligent electromechanical systems
[electronic resource] /by Hui Liu, Fang Cheng, Yanfei Li. - Singapore :Springer Nature Singapore :2025. - xxi, 208 p. :ill. (chiefly color), digital ;24 cm.
Introduction -- Feature extraction of bearing vibration signal -- Ensemble intelligent diagnosis for bearing faults -- Deep learning based prediction for bearing remaining useful life.-Optimization based prediction for IGBT remaining useful life.
This book gives a detailed introduction to the technical background, feature extraction methods, PHM models and big data embedding methods of the big data theory in PHM for intelligent electromechanical systems. Combination with deep learning and big data, this book explains the hybrid algorithm framework of PHM such as ensemble intelligence and optimized intelligence and introduces PHM models for bearing, IGBT, MOSFET and other components and their big data embedding platform. This book improves the PHM method and theory of electromechanical system under industrial big data and provides reference for the development of intelligent electromechanical equipment and intelligent industrial production in the future.
ISBN: 9789819672189
Standard No.: 10.1007/978-981-96-7218-9doiSubjects--Topical Terms:
909355
Electromechanical devices.
LC Class. No.: TK153
Dewey Class. No.: 621.3
Prognostics and health management for intelligent electromechanical systems
LDR
:02105nmm a2200361 a 4500
001
2413591
003
DE-He213
005
20250703130251.0
006
m d
007
cr nn 008maaau
008
260205s2025 si s 0 eng d
020
$a
9789819672189
$q
(electronic bk.)
020
$a
9789819672172
$q
(paper)
024
7
$a
10.1007/978-981-96-7218-9
$2
doi
035
$a
978-981-96-7218-9
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
TK153
072
7
$a
TJF
$2
bicssc
072
7
$a
TGB
$2
bicssc
072
7
$a
TEC009070
$2
bisacsh
072
7
$a
TJF
$2
thema
072
7
$a
TGB
$2
thema
082
0 4
$a
621.3
$2
23
090
$a
TK153
$b
.L783 2025
100
1
$a
Liu, Hui.
$3
803598
245
1 0
$a
Prognostics and health management for intelligent electromechanical systems
$h
[electronic resource] /
$c
by Hui Liu, Fang Cheng, Yanfei Li.
260
$a
Singapore :
$b
Springer Nature Singapore :
$b
Imprint: Springer,
$c
2025.
300
$a
xxi, 208 p. :
$b
ill. (chiefly color), digital ;
$c
24 cm.
338
$a
online resource
$b
cr
$2
rdacarrier
505
0
$a
Introduction -- Feature extraction of bearing vibration signal -- Ensemble intelligent diagnosis for bearing faults -- Deep learning based prediction for bearing remaining useful life.-Optimization based prediction for IGBT remaining useful life.
520
$a
This book gives a detailed introduction to the technical background, feature extraction methods, PHM models and big data embedding methods of the big data theory in PHM for intelligent electromechanical systems. Combination with deep learning and big data, this book explains the hybrid algorithm framework of PHM such as ensemble intelligence and optimized intelligence and introduces PHM models for bearing, IGBT, MOSFET and other components and their big data embedding platform. This book improves the PHM method and theory of electromechanical system under industrial big data and provides reference for the development of intelligent electromechanical equipment and intelligent industrial production in the future.
650
0
$a
Electromechanical devices.
$3
909355
650
0
$a
Artificial intelligence.
$3
516317
650
0
$a
Big data.
$3
2045508
650
1 4
$a
Mechatronics.
$3
737861
650
2 4
$a
Computational Intelligence.
$3
1001631
650
2 4
$a
Data Engineering.
$3
3409361
700
1
$a
Cheng, Fang.
$3
1029436
700
1
$a
Li, Yanfei.
$3
3783664
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer Nature eBook
856
4 0
$u
https://doi.org/10.1007/978-981-96-7218-9
950
$a
Intelligent Technologies and Robotics (SpringerNature-42732)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9519046
電子資源
11.線上閱覽_V
電子書
EB TK153
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入