語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Optimal iterative learning control =...
~
Chu, Bing.
FindBook
Google Book
Amazon
博客來
Optimal iterative learning control = a practitioner's guide /
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Optimal iterative learning control/ by Bing Chu, David H. Owens.
其他題名:
a practitioner's guide /
作者:
Chu, Bing.
其他作者:
Owens, D. H.
出版者:
Cham :Springer Nature Switzerland : : 2025.,
面頁冊數:
xx, 356 p. :ill. (some col.), digital ;24 cm.
內容註:
1. Introduction to Iterative Learning Control -- 2. Brief Review of Systems Control Theory -- 3. Parameter Optimal Iterative Learning Control -- 4. Inverse Based Iterative Learning Control -- 5. Gradient Based Iterative Learning Control -- 6. Norm Optimal Iterative Learning Control -- 7. Optimal Iterative Learning Control: Constraint Handling -- 8. Accelerating the Convergence -- 9. A Case Study on a Robotic Testing Platform -- 10. Summary and Future Research Directions.
Contained By:
Springer Nature eBook
標題:
Intelligent control systems. -
電子資源:
https://doi.org/10.1007/978-3-031-80236-2
ISBN:
9783031802362
Optimal iterative learning control = a practitioner's guide /
Chu, Bing.
Optimal iterative learning control
a practitioner's guide /[electronic resource] :by Bing Chu, David H. Owens. - Cham :Springer Nature Switzerland :2025. - xx, 356 p. :ill. (some col.), digital ;24 cm. - Advances in industrial control,2193-1577. - Advances in industrial control..
1. Introduction to Iterative Learning Control -- 2. Brief Review of Systems Control Theory -- 3. Parameter Optimal Iterative Learning Control -- 4. Inverse Based Iterative Learning Control -- 5. Gradient Based Iterative Learning Control -- 6. Norm Optimal Iterative Learning Control -- 7. Optimal Iterative Learning Control: Constraint Handling -- 8. Accelerating the Convergence -- 9. A Case Study on a Robotic Testing Platform -- 10. Summary and Future Research Directions.
This book introduces an optimal iterative learning control (ILC) design framework from the end user's point of view. Its central theme is the understanding of model dynamics, the construction of a procedure for systematic input updating and their contribution to successful algorithm design. The authors discuss the many applications of ILC in industrial systems, applications such as robotics and mechanical testing. The text covers a number of optimal ILC design methods, including gradient-based and norm-optimal ILC. Their convergence properties are described and detailed design guidelines, including performance-improvement mechanisms, are presented. Readers are given a clear picture of the nature of ILC and the benefits of the optimization-based approach from the conceptual and mathematical foundations of the problem of algorithm construction to the impact of available parameters in making acceleration of algorithmic convergence possible. Three case studies on robotic platforms, an electro-mechanical machine, and robot-assisted stroke rehabilitation are included to demonstrate the application of these methods in the real-world. With its emphasis on basic concepts, detailed design guidelines and examples of benefits, Optimal Iterative Learning Control will be of value to practising engineers and academic researchers alike.
ISBN: 9783031802362
Standard No.: 10.1007/978-3-031-80236-2doiSubjects--Topical Terms:
546464
Intelligent control systems.
LC Class. No.: TJ217.5
Dewey Class. No.: 658.4038
Optimal iterative learning control = a practitioner's guide /
LDR
:02967nmm a2200361 a 4500
001
2413534
003
DE-He213
005
20250613131023.0
006
m d
007
cr nn 008maaau
008
260205s2025 sz s 0 eng d
020
$a
9783031802362
$q
(electronic bk.)
020
$a
9783031802355
$q
(paper)
024
7
$a
10.1007/978-3-031-80236-2
$2
doi
035
$a
978-3-031-80236-2
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
TJ217.5
072
7
$a
TJFM
$2
bicssc
072
7
$a
GPFC
$2
bicssc
072
7
$a
TEC007000
$2
bisacsh
072
7
$a
TJFM
$2
thema
082
0 4
$a
658.4038
$2
23
090
$a
TJ217.5
$b
.C559 2025
100
1
$a
Chu, Bing.
$3
3789684
245
1 0
$a
Optimal iterative learning control
$h
[electronic resource] :
$b
a practitioner's guide /
$c
by Bing Chu, David H. Owens.
260
$a
Cham :
$b
Springer Nature Switzerland :
$b
Imprint: Springer,
$c
2025.
300
$a
xx, 356 p. :
$b
ill. (some col.), digital ;
$c
24 cm.
338
$a
online resource
$b
cr
$2
rdacarrier
490
1
$a
Advances in industrial control,
$x
2193-1577
505
0
$a
1. Introduction to Iterative Learning Control -- 2. Brief Review of Systems Control Theory -- 3. Parameter Optimal Iterative Learning Control -- 4. Inverse Based Iterative Learning Control -- 5. Gradient Based Iterative Learning Control -- 6. Norm Optimal Iterative Learning Control -- 7. Optimal Iterative Learning Control: Constraint Handling -- 8. Accelerating the Convergence -- 9. A Case Study on a Robotic Testing Platform -- 10. Summary and Future Research Directions.
520
$a
This book introduces an optimal iterative learning control (ILC) design framework from the end user's point of view. Its central theme is the understanding of model dynamics, the construction of a procedure for systematic input updating and their contribution to successful algorithm design. The authors discuss the many applications of ILC in industrial systems, applications such as robotics and mechanical testing. The text covers a number of optimal ILC design methods, including gradient-based and norm-optimal ILC. Their convergence properties are described and detailed design guidelines, including performance-improvement mechanisms, are presented. Readers are given a clear picture of the nature of ILC and the benefits of the optimization-based approach from the conceptual and mathematical foundations of the problem of algorithm construction to the impact of available parameters in making acceleration of algorithmic convergence possible. Three case studies on robotic platforms, an electro-mechanical machine, and robot-assisted stroke rehabilitation are included to demonstrate the application of these methods in the real-world. With its emphasis on basic concepts, detailed design guidelines and examples of benefits, Optimal Iterative Learning Control will be of value to practising engineers and academic researchers alike.
650
0
$a
Intelligent control systems.
$3
546464
650
0
$a
Iterative methods (Mathematics)
$3
648278
650
0
$a
Mathematical optimization.
$3
517763
650
1 4
$a
Control and Systems Theory.
$3
3381515
650
2 4
$a
Calculus of Variations and Optimization.
$3
3538813
650
2 4
$a
Control, Robotics, Automation.
$3
3592500
650
2 4
$a
Systems Theory, Control.
$3
893834
700
1
$a
Owens, D. H.
$3
3789685
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer Nature eBook
830
0
$a
Advances in industrial control.
$3
1566025
856
4 0
$u
https://doi.org/10.1007/978-3-031-80236-2
950
$a
Intelligent Technologies and Robotics (SpringerNature-42732)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9518989
電子資源
11.線上閱覽_V
電子書
EB TJ217.5
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入