語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
R applications in earth sciences = f...
~
Pawlik, Łukasz.
FindBook
Google Book
Amazon
博客來
R applications in earth sciences = from soil data to climate time series analysis and modeling /
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
R applications in earth sciences/ by Łukasz Pawlik.
其他題名:
from soil data to climate time series analysis and modeling /
作者:
Pawlik, Łukasz.
出版者:
Cham :Springer Nature Switzerland : : 2025.,
面頁冊數:
xiv, 174 p. :ill. (some col.), digital ;24 cm.
內容註:
Chapter 1: Introduction -- Chapter 2: R for data science - Functionality and basic concepts -- Chapter 3: Soil data structure, properties, and visualization -- Chapter 4: Geochemistry of fossil deposits and climate reconstructions based on proxy data -- Chapter 5: Climate time series -- Chapter 6: Geomorphic data and geomorphometry analyses -- Chapter 7: Dating the past with the radiocarbon method -- Chapter 8: Global tectonics and earthquake dynamics - From data to visualization -- Chapter 9: Land and forest cover change mapping -- Chapter 10: Extreme climate event modeling and prediction with machine learning methods -- Chapter 11: Knowledge in the cloud - LiDAR point cloud data -- Chapter 12: Dynamic visualization and animation -- Chapter 13: Final comments, conclusions, and data science perspective.
Contained By:
Springer Nature eBook
標題:
Earth sciences - Data processing. -
電子資源:
https://doi.org/10.1007/978-3-031-89673-6
ISBN:
9783031896736
R applications in earth sciences = from soil data to climate time series analysis and modeling /
Pawlik, Łukasz.
R applications in earth sciences
from soil data to climate time series analysis and modeling /[electronic resource] :by Łukasz Pawlik. - Cham :Springer Nature Switzerland :2025. - xiv, 174 p. :ill. (some col.), digital ;24 cm. - Springer textbooks in earth sciences, geography and environment,2510-1315. - Springer textbooks in earth sciences, geography and environment..
Chapter 1: Introduction -- Chapter 2: R for data science - Functionality and basic concepts -- Chapter 3: Soil data structure, properties, and visualization -- Chapter 4: Geochemistry of fossil deposits and climate reconstructions based on proxy data -- Chapter 5: Climate time series -- Chapter 6: Geomorphic data and geomorphometry analyses -- Chapter 7: Dating the past with the radiocarbon method -- Chapter 8: Global tectonics and earthquake dynamics - From data to visualization -- Chapter 9: Land and forest cover change mapping -- Chapter 10: Extreme climate event modeling and prediction with machine learning methods -- Chapter 11: Knowledge in the cloud - LiDAR point cloud data -- Chapter 12: Dynamic visualization and animation -- Chapter 13: Final comments, conclusions, and data science perspective.
This textbook helps to understand the real Earth data with the practical application of many handy R tools and techniques. R language and thousands of R packages can be used to solve the most sophisticated scientific problems. The book provides insights to the various approaches to Earth-related data analysis, starting from data preparation and validation, exploratory data analysis, linear regression, and going through time series decomposition, modeling, and prediction. In addition, the book introduces machine learning techniques and their application to some real problems. Along with a profound explanation of the datasets and theoretical considerations of the methods, the book offers a way of solving practical problems lying at the frontline of modern data analysis in physical geography, soils, and climate science.
ISBN: 9783031896736
Standard No.: 10.1007/978-3-031-89673-6doiSubjects--Topical Terms:
544097
Earth sciences
--Data processing.
LC Class. No.: QE48.8
Dewey Class. No.: 550.285
R applications in earth sciences = from soil data to climate time series analysis and modeling /
LDR
:02809nmm a2200349 a 4500
001
2413405
003
DE-He213
005
20250701130228.0
006
m d
007
cr nn 008maaau
008
260205s2025 sz s 0 eng d
020
$a
9783031896736
$q
(electronic bk.)
020
$a
9783031896729
$q
(paper)
024
7
$a
10.1007/978-3-031-89673-6
$2
doi
035
$a
978-3-031-89673-6
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QE48.8
072
7
$a
RB
$2
bicssc
072
7
$a
SCI019000
$2
bisacsh
072
7
$a
RB
$2
thema
082
0 4
$a
550.285
$2
23
090
$a
QE48.8
$b
.P339 2025
100
1
$a
Pawlik, Łukasz.
$3
3789452
245
1 0
$a
R applications in earth sciences
$h
[electronic resource] :
$b
from soil data to climate time series analysis and modeling /
$c
by Łukasz Pawlik.
260
$a
Cham :
$b
Springer Nature Switzerland :
$b
Imprint: Springer,
$c
2025.
300
$a
xiv, 174 p. :
$b
ill. (some col.), digital ;
$c
24 cm.
338
$a
online resource
$b
cr
$2
rdacarrier
490
1
$a
Springer textbooks in earth sciences, geography and environment,
$x
2510-1315
505
0
$a
Chapter 1: Introduction -- Chapter 2: R for data science - Functionality and basic concepts -- Chapter 3: Soil data structure, properties, and visualization -- Chapter 4: Geochemistry of fossil deposits and climate reconstructions based on proxy data -- Chapter 5: Climate time series -- Chapter 6: Geomorphic data and geomorphometry analyses -- Chapter 7: Dating the past with the radiocarbon method -- Chapter 8: Global tectonics and earthquake dynamics - From data to visualization -- Chapter 9: Land and forest cover change mapping -- Chapter 10: Extreme climate event modeling and prediction with machine learning methods -- Chapter 11: Knowledge in the cloud - LiDAR point cloud data -- Chapter 12: Dynamic visualization and animation -- Chapter 13: Final comments, conclusions, and data science perspective.
520
$a
This textbook helps to understand the real Earth data with the practical application of many handy R tools and techniques. R language and thousands of R packages can be used to solve the most sophisticated scientific problems. The book provides insights to the various approaches to Earth-related data analysis, starting from data preparation and validation, exploratory data analysis, linear regression, and going through time series decomposition, modeling, and prediction. In addition, the book introduces machine learning techniques and their application to some real problems. Along with a profound explanation of the datasets and theoretical considerations of the methods, the book offers a way of solving practical problems lying at the frontline of modern data analysis in physical geography, soils, and climate science.
650
0
$a
Earth sciences
$x
Data processing.
$3
544097
650
0
$a
R (Computer program language)
$3
784593
650
1 4
$a
Earth Sciences.
$3
642591
650
2 4
$a
Physical Geography.
$3
893400
650
2 4
$a
Geomorphology.
$3
542703
650
2 4
$a
Geographical Information System.
$3
3538564
650
2 4
$a
Soil Science.
$3
3591641
650
2 4
$a
Climate Sciences.
$3
3592220
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer Nature eBook
830
0
$a
Springer textbooks in earth sciences, geography and environment.
$3
3241931
856
4 0
$u
https://doi.org/10.1007/978-3-031-89673-6
950
$a
Earth and Environmental Science (SpringerNature-11646)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9518860
電子資源
11.線上閱覽_V
電子書
EB QE48.8
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入