語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
An introduction to algebraic geometr...
~
Schreyer, Frank-Olaf.
FindBook
Google Book
Amazon
博客來
An introduction to algebraic geometry = a computational approach /
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
An introduction to algebraic geometry/ by Frank-Olaf Schreyer.
其他題名:
a computational approach /
作者:
Schreyer, Frank-Olaf.
出版者:
Cham :Springer Nature Switzerland : : 2025.,
面頁冊數:
xiii, 302 p. :ill., digital ;24 cm.
內容註:
1. Hilbert's Nullstellensatz -- 2. The algebra-geometry dictionary -- 3. Noetherian rings and primary decomposition -- 4. Localization -- 5. Rational functions and dimension -- 6. Integral ring extensions and Krull dimension -- 7. Constructive ideal and module theory -- 8. Projective algebraic geometry -- 9. Bézout's theorem -- 10. Local rings and power series -- 11. Products and morphisms of projective varieties -- 12. Resolution of curve singularities -- 13. Families of varieties -- 14. Bertini's theorem and applications -- 15. The geometric genus of a plane curve -- 16. Riemann-Roch -- A. A glimpse of sheaves and cohomology -- B. Code for Macaulay2 computation -- References -- Glossary -- Index.
Contained By:
Springer Nature eBook
標題:
Geometry, Algebraic. -
電子資源:
https://doi.org/10.1007/978-3-031-84834-6
ISBN:
9783031848346
An introduction to algebraic geometry = a computational approach /
Schreyer, Frank-Olaf.
An introduction to algebraic geometry
a computational approach /[electronic resource] :by Frank-Olaf Schreyer. - Cham :Springer Nature Switzerland :2025. - xiii, 302 p. :ill., digital ;24 cm. - Universitext,2191-6675. - Universitext..
1. Hilbert's Nullstellensatz -- 2. The algebra-geometry dictionary -- 3. Noetherian rings and primary decomposition -- 4. Localization -- 5. Rational functions and dimension -- 6. Integral ring extensions and Krull dimension -- 7. Constructive ideal and module theory -- 8. Projective algebraic geometry -- 9. Bézout's theorem -- 10. Local rings and power series -- 11. Products and morphisms of projective varieties -- 12. Resolution of curve singularities -- 13. Families of varieties -- 14. Bertini's theorem and applications -- 15. The geometric genus of a plane curve -- 16. Riemann-Roch -- A. A glimpse of sheaves and cohomology -- B. Code for Macaulay2 computation -- References -- Glossary -- Index.
Algebraic Geometry is a huge area of mathematics which went through several phases: Hilbert's fundamental paper from 1890, sheaves and cohomology introduced by Serre in the 1950s, Grothendieck's theory of schemes in the 1960s and so on. This book covers the basic material known before Serre's introduction of sheaves to the subject with an emphasis on computational methods. In particular, we will use Gröbner basis systematically. The highlights are the Nullstellensatz, Gröbner basis, Hilbert's syzygy theorem and the Hilbert function, Bézout's theorem, semi-continuity of the fiber dimension, Bertini's theorem, Cremona resolution of plane curves and parametrization of rational curves. In the final chapter we discuss the proof of the Riemann-Roch theorem due to Brill and Noether, and give its basic applications.The algorithm to compute the Riemann-Roch space of a divisor on a curve, which has a plane model with only ordinary singularities, use adjoint systems. The proof of the completeness of adjoint systems becomes much more transparent if one use cohomology of coherent sheaves. Instead of giving the original proof of Max Noether, we explain in an appendix how this easily follows from standard facts on cohomology of coherent sheaves. The book aims at undergraduate students. It could be a course book for a first Algebraic Geometry lecture, and hopefully motivates further studies.
ISBN: 9783031848346
Standard No.: 10.1007/978-3-031-84834-6doiSubjects--Topical Terms:
532048
Geometry, Algebraic.
LC Class. No.: QA565
Dewey Class. No.: 516.35
An introduction to algebraic geometry = a computational approach /
LDR
:03141nmm a2200337 a 4500
001
2410411
003
DE-He213
005
20250501130230.0
006
m d
007
cr nn 008maaau
008
260204s2025 sz s 0 eng d
020
$a
9783031848346
$q
(electronic bk.)
020
$a
9783031848339
$q
(paper)
024
7
$a
10.1007/978-3-031-84834-6
$2
doi
035
$a
978-3-031-84834-6
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA565
072
7
$a
PBMW
$2
bicssc
072
7
$a
MAT012010
$2
bisacsh
072
7
$a
PBMW
$2
thema
082
0 4
$a
516.35
$2
23
090
$a
QA565
$b
.S379 2025
100
1
$a
Schreyer, Frank-Olaf.
$3
1041583
245
1 3
$a
An introduction to algebraic geometry
$h
[electronic resource] :
$b
a computational approach /
$c
by Frank-Olaf Schreyer.
260
$a
Cham :
$b
Springer Nature Switzerland :
$b
Imprint: Springer,
$c
2025.
300
$a
xiii, 302 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Universitext,
$x
2191-6675
505
0
$a
1. Hilbert's Nullstellensatz -- 2. The algebra-geometry dictionary -- 3. Noetherian rings and primary decomposition -- 4. Localization -- 5. Rational functions and dimension -- 6. Integral ring extensions and Krull dimension -- 7. Constructive ideal and module theory -- 8. Projective algebraic geometry -- 9. Bézout's theorem -- 10. Local rings and power series -- 11. Products and morphisms of projective varieties -- 12. Resolution of curve singularities -- 13. Families of varieties -- 14. Bertini's theorem and applications -- 15. The geometric genus of a plane curve -- 16. Riemann-Roch -- A. A glimpse of sheaves and cohomology -- B. Code for Macaulay2 computation -- References -- Glossary -- Index.
520
$a
Algebraic Geometry is a huge area of mathematics which went through several phases: Hilbert's fundamental paper from 1890, sheaves and cohomology introduced by Serre in the 1950s, Grothendieck's theory of schemes in the 1960s and so on. This book covers the basic material known before Serre's introduction of sheaves to the subject with an emphasis on computational methods. In particular, we will use Gröbner basis systematically. The highlights are the Nullstellensatz, Gröbner basis, Hilbert's syzygy theorem and the Hilbert function, Bézout's theorem, semi-continuity of the fiber dimension, Bertini's theorem, Cremona resolution of plane curves and parametrization of rational curves. In the final chapter we discuss the proof of the Riemann-Roch theorem due to Brill and Noether, and give its basic applications.The algorithm to compute the Riemann-Roch space of a divisor on a curve, which has a plane model with only ordinary singularities, use adjoint systems. The proof of the completeness of adjoint systems becomes much more transparent if one use cohomology of coherent sheaves. Instead of giving the original proof of Max Noether, we explain in an appendix how this easily follows from standard facts on cohomology of coherent sheaves. The book aims at undergraduate students. It could be a course book for a first Algebraic Geometry lecture, and hopefully motivates further studies.
650
0
$a
Geometry, Algebraic.
$3
532048
650
1 4
$a
Algebraic Geometry.
$3
893861
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer Nature eBook
830
0
$a
Universitext.
$3
812115
856
4 0
$u
https://doi.org/10.1007/978-3-031-84834-6
950
$a
Mathematics and Statistics (SpringerNature-11649)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9515909
電子資源
11.線上閱覽_V
電子書
EB QA565
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入