語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Deep learning in ad-hoc wireless net...
~
ALTAN, Gokhan.
FindBook
Google Book
Amazon
博客來
Deep learning in ad-hoc wireless networks
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Deep learning in ad-hoc wireless networks/ edited by Gokhan ALTAN, Ipek ABASIKELEŞ TURGUT.
其他作者:
ALTAN, Gokhan.
出版者:
Cham :Springer Nature Switzerland : : 2025.,
面頁冊數:
v, 123 p. :ill. (chiefly color), digital ;24 cm.
內容註:
Recent Deep Learning based Trust Solutions -- Smart Mobility Solutions: The Role of Deep Learning in Traffic Management -- A Survey of Routing Protocols for Low Power and Lossy IoT Network -- Generative Artificial Intelligence Using Deep Learning on Wireless Ad-Hoc Networks.
Contained By:
Springer Nature eBook
標題:
Ad hoc networks (Computer networks) -
電子資源:
https://doi.org/10.1007/978-3-031-86075-1
ISBN:
9783031860751
Deep learning in ad-hoc wireless networks
Deep learning in ad-hoc wireless networks
[electronic resource] /edited by Gokhan ALTAN, Ipek ABASIKELEŞ TURGUT. - Cham :Springer Nature Switzerland :2025. - v, 123 p. :ill. (chiefly color), digital ;24 cm. - Studies in big data,v. 1722197-6511 ;. - Studies in big data ;v. 172..
Recent Deep Learning based Trust Solutions -- Smart Mobility Solutions: The Role of Deep Learning in Traffic Management -- A Survey of Routing Protocols for Low Power and Lossy IoT Network -- Generative Artificial Intelligence Using Deep Learning on Wireless Ad-Hoc Networks.
This book presents innovative applications of deep learning techniques in wireless ad-hoc networks, addressing critical challenges such as trust, routing, traffic management, and intrusion detection. By combining advanced AI models with real-world network scenarios, the chapters explore novel solutions for improving network reliability, security, and efficiency. Readers benefit from a multidisciplinary approach that bridges deep learning and wireless communication, offering both theoretical insights and practical frameworks. Targeting researchers, engineers, and graduate students, this work serves as a valuable resource for understanding and implementing deep learning strategies to optimize modern wireless systems. Whether improving IoT networks, securing controller area networks, or enabling smart mobility, the book provides actionable knowledge on Deep Learning applications for solving current and future challenges in ad-hoc wireless networks.
ISBN: 9783031860751
Standard No.: 10.1007/978-3-031-86075-1doiSubjects--Topical Terms:
922461
Ad hoc networks (Computer networks)
LC Class. No.: TK5105.77
Dewey Class. No.: 004.685
Deep learning in ad-hoc wireless networks
LDR
:02310nmm a2200337 a 4500
001
2410275
003
DE-He213
005
20250428130207.0
006
m d
007
cr nn 008maaau
008
260204s2025 sz s 0 eng d
020
$a
9783031860751
$q
(electronic bk.)
020
$a
9783031860744
$q
(paper)
024
7
$a
10.1007/978-3-031-86075-1
$2
doi
035
$a
978-3-031-86075-1
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
TK5105.77
072
7
$a
UN
$2
bicssc
072
7
$a
COM018000
$2
bisacsh
072
7
$a
UN
$2
thema
082
0 4
$a
004.685
$2
23
090
$a
TK5105.77
$b
.D311 2025
245
0 0
$a
Deep learning in ad-hoc wireless networks
$h
[electronic resource] /
$c
edited by Gokhan ALTAN, Ipek ABASIKELEŞ TURGUT.
260
$a
Cham :
$b
Springer Nature Switzerland :
$b
Imprint: Springer,
$c
2025.
300
$a
v, 123 p. :
$b
ill. (chiefly color), digital ;
$c
24 cm.
490
1
$a
Studies in big data,
$x
2197-6511 ;
$v
v. 172
505
0
$a
Recent Deep Learning based Trust Solutions -- Smart Mobility Solutions: The Role of Deep Learning in Traffic Management -- A Survey of Routing Protocols for Low Power and Lossy IoT Network -- Generative Artificial Intelligence Using Deep Learning on Wireless Ad-Hoc Networks.
520
$a
This book presents innovative applications of deep learning techniques in wireless ad-hoc networks, addressing critical challenges such as trust, routing, traffic management, and intrusion detection. By combining advanced AI models with real-world network scenarios, the chapters explore novel solutions for improving network reliability, security, and efficiency. Readers benefit from a multidisciplinary approach that bridges deep learning and wireless communication, offering both theoretical insights and practical frameworks. Targeting researchers, engineers, and graduate students, this work serves as a valuable resource for understanding and implementing deep learning strategies to optimize modern wireless systems. Whether improving IoT networks, securing controller area networks, or enabling smart mobility, the book provides actionable knowledge on Deep Learning applications for solving current and future challenges in ad-hoc wireless networks.
650
0
$a
Ad hoc networks (Computer networks)
$3
922461
650
0
$a
Deep learning (Machine learning)
$3
3538509
650
1 4
$a
Data Engineering.
$3
3409361
650
2 4
$a
Wireless and Mobile Communication.
$3
3338159
650
2 4
$a
Big Data.
$3
3134868
650
2 4
$a
Computational Intelligence.
$3
1001631
650
2 4
$a
Machine Learning.
$3
3382522
700
1
$a
ALTAN, Gokhan.
$3
3784065
700
1
$a
Turgut, Ipek Abasikeleş.
$3
3784066
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer Nature eBook
830
0
$a
Studies in big data ;
$v
v. 172.
$3
3784067
856
4 0
$u
https://doi.org/10.1007/978-3-031-86075-1
950
$a
Intelligent Technologies and Robotics (SpringerNature-42732)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9515773
電子資源
11.線上閱覽_V
電子書
EB TK5105.77
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入