Language:
English
繁體中文
Help
回圖書館首頁
手機版館藏查詢
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
Fractional-order activation function...
~
Bingi, Kishore.
Linked to FindBook
Google Book
Amazon
博客來
Fractional-order activation functions for neural networks = case studies on forecasting wind turbines' generated power /
Record Type:
Electronic resources : Monograph/item
Title/Author:
Fractional-order activation functions for neural networks/ by Kishore Bingi, Ramadevi Bhukya, Venkata Ramana Kasi.
Reminder of title:
case studies on forecasting wind turbines' generated power /
Author:
Bingi, Kishore.
other author:
Bhukya, Ramadevi.
Published:
Cham :Springer Nature Switzerland : : 2025.,
Description:
xvii, 238 p. :ill. (some col.), digital ;24 cm.
[NT 15003449]:
Introduction -- Fractional-order Activation Functions -- Fractional-order Neural Networks -- Forecasting of Texas Wind Turbines' Generated Power -- Forecasting of Jeju Islands Wind Turbines' Generated Power -- Forecasting of Renewable Energy Using Fractional-Order Neural Networks -- Fractional Feedforward Neural Network-Based Smart Grid Stability Prediction Model.
Contained By:
Springer Nature eBook
Subject:
Neural networks (Computer science) - Mathematics. -
Online resource:
https://doi.org/10.1007/978-3-031-88091-9
ISBN:
9783031880919
Fractional-order activation functions for neural networks = case studies on forecasting wind turbines' generated power /
Bingi, Kishore.
Fractional-order activation functions for neural networks
case studies on forecasting wind turbines' generated power /[electronic resource] :by Kishore Bingi, Ramadevi Bhukya, Venkata Ramana Kasi. - Cham :Springer Nature Switzerland :2025. - xvii, 238 p. :ill. (some col.), digital ;24 cm. - Studies in systems, decision and control,v. 5882198-4190 ;. - Studies in systems, decision and control ;v. 588..
Introduction -- Fractional-order Activation Functions -- Fractional-order Neural Networks -- Forecasting of Texas Wind Turbines' Generated Power -- Forecasting of Jeju Islands Wind Turbines' Generated Power -- Forecasting of Renewable Energy Using Fractional-Order Neural Networks -- Fractional Feedforward Neural Network-Based Smart Grid Stability Prediction Model.
This book suggests the development of single and multi-layer fractional-order neural networks that incorporate fractional-order activation functions derived using fractional-order derivatives. Activation functions are essential in neural networks as they introduce nonlinearity, enabling the models to learn complex patterns in data. However, traditional activation functions have limitations such as non-differentiability, vanishing gradient problems, and inactive neurons at negative inputs, which can affect the performance of neural networks, especially for tasks involving intricate nonlinear dynamics. To address these issues, fractional-order derivatives from fractional calculus have been proposed. These derivatives can model complex systems with non-local or non-Markovian behavior. The aim is to improve wind power prediction accuracy using datasets from the Texas wind turbine and Jeju Island wind farm under various scenarios. The book explores the advantages of fractional-order activation functions in terms of robustness, faster convergence, and greater flexibility in hyper-parameter tuning. It includes a comparative analysis of single and multi-layer fractional-order neural networks versus conventional neural networks, assessing their performance based on metrics such as mean square error and coefficient of determination. The impact of using machine learning models to impute missing data on the performance of networks is also discussed. This book demonstrates the potential of fractional-order activation functions to enhance neural network models, particularly in predicting chaotic time series. The findings suggest that fractional-order activation functions can significantly improve accuracy and performance, emphasizing the importance of advancing activation function design in neural network analysis. Additionally, the book is a valuable teaching and learning resource for undergraduate and postgraduate students conducting research in this field.
ISBN: 9783031880919
Standard No.: 10.1007/978-3-031-88091-9doiSubjects--Topical Terms:
904846
Neural networks (Computer science)
--Mathematics.
LC Class. No.: QA76.87
Dewey Class. No.: 006.32
Fractional-order activation functions for neural networks = case studies on forecasting wind turbines' generated power /
LDR
:03494nmm a2200337 a 4500
001
2410196
003
DE-He213
005
20250523130345.0
006
m d
007
cr nn 008maaau
008
260204s2025 sz s 0 eng d
020
$a
9783031880919
$q
(electronic bk.)
020
$a
9783031880902
$q
(paper)
024
7
$a
10.1007/978-3-031-88091-9
$2
doi
035
$a
978-3-031-88091-9
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA76.87
072
7
$a
TH
$2
bicssc
072
7
$a
TEC031000
$2
bisacsh
072
7
$a
TH
$2
thema
082
0 4
$a
006.32
$2
23
090
$a
QA76.87
$b
.B613 2025
100
1
$a
Bingi, Kishore.
$3
3444542
245
1 0
$a
Fractional-order activation functions for neural networks
$h
[electronic resource] :
$b
case studies on forecasting wind turbines' generated power /
$c
by Kishore Bingi, Ramadevi Bhukya, Venkata Ramana Kasi.
260
$a
Cham :
$b
Springer Nature Switzerland :
$b
Imprint: Springer,
$c
2025.
300
$a
xvii, 238 p. :
$b
ill. (some col.), digital ;
$c
24 cm.
490
1
$a
Studies in systems, decision and control,
$x
2198-4190 ;
$v
v. 588
505
0
$a
Introduction -- Fractional-order Activation Functions -- Fractional-order Neural Networks -- Forecasting of Texas Wind Turbines' Generated Power -- Forecasting of Jeju Islands Wind Turbines' Generated Power -- Forecasting of Renewable Energy Using Fractional-Order Neural Networks -- Fractional Feedforward Neural Network-Based Smart Grid Stability Prediction Model.
520
$a
This book suggests the development of single and multi-layer fractional-order neural networks that incorporate fractional-order activation functions derived using fractional-order derivatives. Activation functions are essential in neural networks as they introduce nonlinearity, enabling the models to learn complex patterns in data. However, traditional activation functions have limitations such as non-differentiability, vanishing gradient problems, and inactive neurons at negative inputs, which can affect the performance of neural networks, especially for tasks involving intricate nonlinear dynamics. To address these issues, fractional-order derivatives from fractional calculus have been proposed. These derivatives can model complex systems with non-local or non-Markovian behavior. The aim is to improve wind power prediction accuracy using datasets from the Texas wind turbine and Jeju Island wind farm under various scenarios. The book explores the advantages of fractional-order activation functions in terms of robustness, faster convergence, and greater flexibility in hyper-parameter tuning. It includes a comparative analysis of single and multi-layer fractional-order neural networks versus conventional neural networks, assessing their performance based on metrics such as mean square error and coefficient of determination. The impact of using machine learning models to impute missing data on the performance of networks is also discussed. This book demonstrates the potential of fractional-order activation functions to enhance neural network models, particularly in predicting chaotic time series. The findings suggest that fractional-order activation functions can significantly improve accuracy and performance, emphasizing the importance of advancing activation function design in neural network analysis. Additionally, the book is a valuable teaching and learning resource for undergraduate and postgraduate students conducting research in this field.
650
0
$a
Neural networks (Computer science)
$x
Mathematics.
$3
904846
650
0
$a
Fractional programming.
$3
3607899
650
0
$a
Wind turbines
$x
Mathematical models.
$3
1084645
650
1 4
$a
Mechanical Power Engineering.
$3
3592501
650
2 4
$a
Mathematical and Computational Engineering Applications.
$3
3592737
650
2 4
$a
Process Engineering.
$3
3591945
700
1
$a
Bhukya, Ramadevi.
$3
3783923
700
1
$a
Kasi, Venkata Ramana.
$3
3783924
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer Nature eBook
830
0
$a
Studies in systems, decision and control ;
$v
v. 588.
$3
3783925
856
4 0
$u
https://doi.org/10.1007/978-3-031-88091-9
950
$a
Engineering (SpringerNature-11647)
based on 0 review(s)
Location:
ALL
電子資源
Year:
Volume Number:
Items
1 records • Pages 1 •
1
Inventory Number
Location Name
Item Class
Material type
Call number
Usage Class
Loan Status
No. of reservations
Opac note
Attachments
W9515694
電子資源
11.線上閱覽_V
電子書
EB QA76.87
一般使用(Normal)
On shelf
0
1 records • Pages 1 •
1
Multimedia
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login