語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Artificial intelligence and machine ...
~
Srinivasa Raju, K.
FindBook
Google Book
Amazon
博客來
Artificial intelligence and machine learning techniques in engineering and management
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Artificial intelligence and machine learning techniques in engineering and management/ by Komaragiri Srinivasa Raju, Dasika Nagesh Kumar.
作者:
Srinivasa Raju, K.
其他作者:
Nagesh Kumar, D.
出版者:
Singapore :Springer Nature Singapore : : 2025.,
面頁冊數:
xxv, 266 p. :ill., digital ;24 cm.
內容註:
Chapter 1. Introduction -- Chapter 2. Description of Performance Indicators -- Chapter 3. Classical Machine Learning Algorithms -- Chapter 4. Advanced Machine Learning Algorithms -- Chapter 5. Fuzzy-based Modelling techniques -- Chapter 6. Emerging Research Areas -- Chapter 7. Case Studies.
Contained By:
Springer Nature eBook
標題:
Engineering - Data processing. -
電子資源:
https://doi.org/10.1007/978-981-96-2621-2
ISBN:
9789819626212
Artificial intelligence and machine learning techniques in engineering and management
Srinivasa Raju, K.
Artificial intelligence and machine learning techniques in engineering and management
[electronic resource] /by Komaragiri Srinivasa Raju, Dasika Nagesh Kumar. - Singapore :Springer Nature Singapore :2025. - xxv, 266 p. :ill., digital ;24 cm.
Chapter 1. Introduction -- Chapter 2. Description of Performance Indicators -- Chapter 3. Classical Machine Learning Algorithms -- Chapter 4. Advanced Machine Learning Algorithms -- Chapter 5. Fuzzy-based Modelling techniques -- Chapter 6. Emerging Research Areas -- Chapter 7. Case Studies.
The present book covers various facets of Artificial Intelligence, Machine Learning, and Fuzzy Logic. It includes a brief discussion on performance indicators, Classical and Advanced Machine Learning algorithms, Fuzzy logic-based modelling algorithms, Emerging Research Areas, including Blockchain, recent ML techniques, Evolutionary Algorithms, Large Language Model (LLM)-based Generative AI, the Internet of Things, Big Data, Decision Support Systems, Taguchi design of experiments, data augmentation, and Cross-Validation, and representative case studies. The appendix covers representative AI tools, data sources, books, and journals on AI. The present book can support undergraduate, postgraduate, and Ph.D. students in Artificial Intelligence, Generative Artificial Intelligence, Machine Learning, Data Sciences, Soft Computing, and Fuzzy Logic in Engineering and Management and allied fields. The proposed book has immense value in the interdisciplinary and cross-disciplinary context.
ISBN: 9789819626212
Standard No.: 10.1007/978-981-96-2621-2doiSubjects--Topical Terms:
570384
Engineering
--Data processing.
LC Class. No.: TA347.A78
Dewey Class. No.: 620.0028563
Artificial intelligence and machine learning techniques in engineering and management
LDR
:02314nmm a2200325 a 4500
001
2410192
003
DE-He213
005
20250521124718.0
006
m d
007
cr nn 008maaau
008
260204s2025 si s 0 eng d
020
$a
9789819626212
$q
(electronic bk.)
020
$a
9789819626205
$q
(paper)
024
7
$a
10.1007/978-981-96-2621-2
$2
doi
035
$a
978-981-96-2621-2
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
TA347.A78
072
7
$a
TN
$2
bicssc
072
7
$a
TEC009020
$2
bisacsh
072
7
$a
TN
$2
thema
082
0 4
$a
620.0028563
$2
23
090
$a
TA347.A78
$b
S774 2025
100
1
$a
Srinivasa Raju, K.
$3
3783917
245
1 0
$a
Artificial intelligence and machine learning techniques in engineering and management
$h
[electronic resource] /
$c
by Komaragiri Srinivasa Raju, Dasika Nagesh Kumar.
260
$a
Singapore :
$b
Springer Nature Singapore :
$b
Imprint: Springer,
$c
2025.
300
$a
xxv, 266 p. :
$b
ill., digital ;
$c
24 cm.
505
0
$a
Chapter 1. Introduction -- Chapter 2. Description of Performance Indicators -- Chapter 3. Classical Machine Learning Algorithms -- Chapter 4. Advanced Machine Learning Algorithms -- Chapter 5. Fuzzy-based Modelling techniques -- Chapter 6. Emerging Research Areas -- Chapter 7. Case Studies.
520
$a
The present book covers various facets of Artificial Intelligence, Machine Learning, and Fuzzy Logic. It includes a brief discussion on performance indicators, Classical and Advanced Machine Learning algorithms, Fuzzy logic-based modelling algorithms, Emerging Research Areas, including Blockchain, recent ML techniques, Evolutionary Algorithms, Large Language Model (LLM)-based Generative AI, the Internet of Things, Big Data, Decision Support Systems, Taguchi design of experiments, data augmentation, and Cross-Validation, and representative case studies. The appendix covers representative AI tools, data sources, books, and journals on AI. The present book can support undergraduate, postgraduate, and Ph.D. students in Artificial Intelligence, Generative Artificial Intelligence, Machine Learning, Data Sciences, Soft Computing, and Fuzzy Logic in Engineering and Management and allied fields. The proposed book has immense value in the interdisciplinary and cross-disciplinary context.
650
0
$a
Engineering
$x
Data processing.
$3
570384
650
0
$a
Management
$x
Data processing.
$3
645905
650
0
$a
Artificial intelligence
$x
Engineering applications.
$3
1567162
650
0
$a
Machine learning.
$3
533906
650
1 4
$a
Civil Engineering.
$3
891037
650
2 4
$a
Industrial Management.
$3
3537892
650
2 4
$a
Artificial Intelligence.
$3
769149
650
2 4
$a
Machine Learning.
$3
3382522
650
2 4
$a
Computer Science.
$3
626642
700
1
$a
Nagesh Kumar, D.
$3
3783918
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer Nature eBook
856
4 0
$u
https://doi.org/10.1007/978-981-96-2621-2
950
$a
Engineering (SpringerNature-11647)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9515690
電子資源
11.線上閱覽_V
電子書
EB TA347.A78
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入