Language:
English
繁體中文
Help
回圖書館首頁
手機版館藏查詢
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
Data science in air quality monitoring
~
Liu, Hui.
Linked to FindBook
Google Book
Amazon
博客來
Data science in air quality monitoring
Record Type:
Electronic resources : Monograph/item
Title/Author:
Data science in air quality monitoring/ by Hui Liu, Yanfei Li, Zhu Duan.
Author:
Liu, Hui.
other author:
Li, Yanfei.
Published:
Singapore :Springer Nature Singapore : : 2025.,
Description:
xxii, 239 p. :ill., digital ;24 cm.
[NT 15003449]:
Chapter 1 Introduction -- Chapter 2 Data preprocessing in air quality monitoring -- Chapter 3 Data decomposition in air quality monitoring -- Chapter 4 Data identification in air quality monitoring -- Chapter 5 Data preprocessing in air quality monitoring -- Chapter 6 Data forecasting in air quality monitoring -- Chapter 7 Data interpolation in air quality monitoring.
Contained By:
Springer Nature eBook
Subject:
Air quality - Measurement -
Online resource:
https://doi.org/10.1007/978-981-96-5777-3
ISBN:
9789819657773
Data science in air quality monitoring
Liu, Hui.
Data science in air quality monitoring
[electronic resource] /by Hui Liu, Yanfei Li, Zhu Duan. - Singapore :Springer Nature Singapore :2025. - xxii, 239 p. :ill., digital ;24 cm. - Engineering applications of computational methods,v. 232662-3374 ;. - Engineering applications of computational methods ;v. 23..
Chapter 1 Introduction -- Chapter 2 Data preprocessing in air quality monitoring -- Chapter 3 Data decomposition in air quality monitoring -- Chapter 4 Data identification in air quality monitoring -- Chapter 5 Data preprocessing in air quality monitoring -- Chapter 6 Data forecasting in air quality monitoring -- Chapter 7 Data interpolation in air quality monitoring.
This book presents a series of state-of-the-art methods for air quality monitoring in various engineering environment by using data science. In the book, the data-driven key techniques of the preprocessing, decomposition, identification, clustering, forecasting and interpolation of the air quality monitoring are explained in details with lots of experimental simulation. The book can provide important reference for the development of data science technologies in engineering air quality monitoring. The book can be used for students, engineers, scientists and managers in the fields of environmental engineering, atmospheric science, urban climate, civil engineering, traffic and vehicle engineering, etc.
ISBN: 9789819657773
Standard No.: 10.1007/978-981-96-5777-3doiSubjects--Topical Terms:
3783667
Air quality
--Measurement
LC Class. No.: TD890
Dewey Class. No.: 628.53
Data science in air quality monitoring
LDR
:02195nmm a2200361 a 4500
001
2410051
003
DE-He213
005
20250603131217.0
006
m d
007
cr nn 008maaau
008
260204s2025 si s 0 eng d
020
$a
9789819657773
$q
(electronic bk.)
020
$a
9789819657766
$q
(paper)
024
7
$a
10.1007/978-981-96-5777-3
$2
doi
035
$a
978-981-96-5777-3
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
TD890
072
7
$a
RN
$2
bicssc
072
7
$a
PBW
$2
bicssc
072
7
$a
SCI026000
$2
bisacsh
072
7
$a
RN
$2
thema
072
7
$a
PBW
$2
thema
082
0 4
$a
628.53
$2
23
090
$a
TD890
$b
.L783 2025
100
1
$a
Liu, Hui.
$3
803598
245
1 0
$a
Data science in air quality monitoring
$h
[electronic resource] /
$c
by Hui Liu, Yanfei Li, Zhu Duan.
260
$a
Singapore :
$b
Springer Nature Singapore :
$b
Imprint: Springer,
$c
2025.
300
$a
xxii, 239 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Engineering applications of computational methods,
$x
2662-3374 ;
$v
v. 23
505
0
$a
Chapter 1 Introduction -- Chapter 2 Data preprocessing in air quality monitoring -- Chapter 3 Data decomposition in air quality monitoring -- Chapter 4 Data identification in air quality monitoring -- Chapter 5 Data preprocessing in air quality monitoring -- Chapter 6 Data forecasting in air quality monitoring -- Chapter 7 Data interpolation in air quality monitoring.
520
$a
This book presents a series of state-of-the-art methods for air quality monitoring in various engineering environment by using data science. In the book, the data-driven key techniques of the preprocessing, decomposition, identification, clustering, forecasting and interpolation of the air quality monitoring are explained in details with lots of experimental simulation. The book can provide important reference for the development of data science technologies in engineering air quality monitoring. The book can be used for students, engineers, scientists and managers in the fields of environmental engineering, atmospheric science, urban climate, civil engineering, traffic and vehicle engineering, etc.
650
0
$a
Air quality
$x
Measurement
$x
Data processing.
$3
3783667
650
0
$a
Data mining.
$3
562972
650
1 4
$a
Mathematical Applications in Environmental Science.
$3
3538737
650
2 4
$a
Environmental Monitoring.
$3
770902
650
2 4
$a
Data Science.
$3
3538937
650
2 4
$a
Data Engineering.
$3
3409361
650
2 4
$a
Pollution.
$3
518679
700
1
$a
Li, Yanfei.
$3
3783664
700
1
$a
Duan, Zhu.
$3
3783665
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer Nature eBook
830
0
$a
Engineering applications of computational methods ;
$v
v. 23.
$3
3783666
856
4 0
$u
https://doi.org/10.1007/978-981-96-5777-3
950
$a
Earth and Environmental Science (SpringerNature-11646)
based on 0 review(s)
Location:
ALL
電子資源
Year:
Volume Number:
Items
1 records • Pages 1 •
1
Inventory Number
Location Name
Item Class
Material type
Call number
Usage Class
Loan Status
No. of reservations
Opac note
Attachments
W9515549
電子資源
11.線上閱覽_V
電子書
EB TD890
一般使用(Normal)
On shelf
0
1 records • Pages 1 •
1
Multimedia
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login