Language:
English
繁體中文
Help
回圖書館首頁
手機版館藏查詢
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
Hybrid imaging and visualization = e...
~
Awange, Joseph L.
Linked to FindBook
Google Book
Amazon
博客來
Hybrid imaging and visualization = employing machine learning with Mathematica - Python /
Record Type:
Electronic resources : Monograph/item
Title/Author:
Hybrid imaging and visualization/ by Joseph Awange, Béla Paláncz, Lajos Völgyesi.
Reminder of title:
employing machine learning with Mathematica - Python /
Author:
Awange, Joseph L.
other author:
Paláncz, Béla.
Published:
Cham :Springer Nature Switzerland : : 2025.,
Description:
xxiii, 450 p. :ill. (some col.), digital ;24 cm.
[NT 15003449]:
Chapter 1. Dimension Reduction -- Chapter 2. Classification -- Chapter 3. Clustering -- Chapter 4. Regression -- Chapter 5. Neural Networks -- Chapter 6. Optimizing Hyperparameters -- Chapter 7. ChatGPT.
Contained By:
Springer Nature eBook
Subject:
Computer vision. -
Online resource:
https://doi.org/10.1007/978-3-031-72817-4
ISBN:
9783031728174
Hybrid imaging and visualization = employing machine learning with Mathematica - Python /
Awange, Joseph L.
Hybrid imaging and visualization
employing machine learning with Mathematica - Python /[electronic resource] :by Joseph Awange, Béla Paláncz, Lajos Völgyesi. - Second edition. - Cham :Springer Nature Switzerland :2025. - xxiii, 450 p. :ill. (some col.), digital ;24 cm.
Chapter 1. Dimension Reduction -- Chapter 2. Classification -- Chapter 3. Clustering -- Chapter 4. Regression -- Chapter 5. Neural Networks -- Chapter 6. Optimizing Hyperparameters -- Chapter 7. ChatGPT.
This second edition of the book that targets those in computer algebra and artificial intelligence introduces Black Hole algorithm that is essential for optimizing hyperparameters, an important task in machine learning where mostly, stochastic global methods are used as well as ChatGPT, a novel and in the last few years, very popular Generative AI technology. In addition, fisher discriminant, a linear discriminant that can provide an optimal separation of objects, and the conversion of time series into images thereby making it possible to employ convolution neural network to classify time series effectively are presented.
ISBN: 9783031728174
Standard No.: 10.1007/978-3-031-72817-4doiSubjects--Topical Terms:
540671
Computer vision.
LC Class. No.: TA1634
Dewey Class. No.: 006.37
Hybrid imaging and visualization = employing machine learning with Mathematica - Python /
LDR
:01922nmm a2200337 a 4500
001
2410001
003
DE-He213
005
20250506125951.0
006
m d
007
cr nn 008maaau
008
260204s2025 sz s 0 eng d
020
$a
9783031728174
$q
(electronic bk.)
020
$a
9783031728167
$q
(paper)
024
7
$a
10.1007/978-3-031-72817-4
$2
doi
035
$a
978-3-031-72817-4
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
TA1634
072
7
$a
RGW
$2
bicssc
072
7
$a
SCI030000
$2
bisacsh
072
7
$a
RGW
$2
thema
082
0 4
$a
006.37
$2
23
090
$a
TA1634
$b
.A964 2025
100
1
$a
Awange, Joseph L.
$3
896373
245
1 0
$a
Hybrid imaging and visualization
$h
[electronic resource] :
$b
employing machine learning with Mathematica - Python /
$c
by Joseph Awange, Béla Paláncz, Lajos Völgyesi.
250
$a
Second edition.
260
$a
Cham :
$b
Springer Nature Switzerland :
$b
Imprint: Springer,
$c
2025.
300
$a
xxiii, 450 p. :
$b
ill. (some col.), digital ;
$c
24 cm.
505
0
$a
Chapter 1. Dimension Reduction -- Chapter 2. Classification -- Chapter 3. Clustering -- Chapter 4. Regression -- Chapter 5. Neural Networks -- Chapter 6. Optimizing Hyperparameters -- Chapter 7. ChatGPT.
520
$a
This second edition of the book that targets those in computer algebra and artificial intelligence introduces Black Hole algorithm that is essential for optimizing hyperparameters, an important task in machine learning where mostly, stochastic global methods are used as well as ChatGPT, a novel and in the last few years, very popular Generative AI technology. In addition, fisher discriminant, a linear discriminant that can provide an optimal separation of objects, and the conversion of time series into images thereby making it possible to employ convolution neural network to classify time series effectively are presented.
650
0
$a
Computer vision.
$3
540671
650
1 4
$a
Geographical Information System.
$3
3538564
650
2 4
$a
Computer Imaging, Vision, Pattern Recognition and Graphics.
$3
890871
650
2 4
$a
Geophysics.
$3
535228
650
2 4
$a
Space Physics.
$3
3538914
700
1
$a
Paláncz, Béla.
$3
3783582
700
1
$a
Völgyesi, Lajos.
$3
3783583
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer Nature eBook
856
4 0
$u
https://doi.org/10.1007/978-3-031-72817-4
950
$a
Earth and Environmental Science (SpringerNature-11646)
based on 0 review(s)
Location:
ALL
電子資源
Year:
Volume Number:
Items
1 records • Pages 1 •
1
Inventory Number
Location Name
Item Class
Material type
Call number
Usage Class
Loan Status
No. of reservations
Opac note
Attachments
W9515499
電子資源
11.線上閱覽_V
電子書
EB TA1634
一般使用(Normal)
On shelf
0
1 records • Pages 1 •
1
Multimedia
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login