語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Gaussian process models for quantita...
~
Ludkovski, Michael.
FindBook
Google Book
Amazon
博客來
Gaussian process models for quantitative finance
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Gaussian process models for quantitative finance/ by Michael Ludkovski, Jimmy Risk.
作者:
Ludkovski, Michael.
其他作者:
Risk, Jimmy.
出版者:
Cham :Springer Nature Switzerland : : 2025.,
面頁冊數:
xii, 138 p. :ill. (chiefly color), digital ;24 cm.
內容註:
- 1. Gaussian Process Preliminaries -- 2. Covariance Kernels -- 3. Advanced GP Modeling Topics -- 4. Option Pricing and Sensitivities -- 5. Optimal Stopping -- 6. Non-Parametric Modeling of Financial Structures -- 7. Stochastic Control.
Contained By:
Springer Nature eBook
標題:
Finance - Mathematical models. -
電子資源:
https://doi.org/10.1007/978-3-031-80874-6
ISBN:
9783031808746
Gaussian process models for quantitative finance
Ludkovski, Michael.
Gaussian process models for quantitative finance
[electronic resource] /by Michael Ludkovski, Jimmy Risk. - Cham :Springer Nature Switzerland :2025. - xii, 138 p. :ill. (chiefly color), digital ;24 cm. - SpringerBriefs in quantitative finance,2192-7014. - SpringerBriefs in quantitative finance..
- 1. Gaussian Process Preliminaries -- 2. Covariance Kernels -- 3. Advanced GP Modeling Topics -- 4. Option Pricing and Sensitivities -- 5. Optimal Stopping -- 6. Non-Parametric Modeling of Financial Structures -- 7. Stochastic Control.
This book describes the diverse applications of Gaussian Process (GP) models in mathematical finance. Spurred by the transformative influence of machine learning frameworks, the text aims to integrate GP modeling into the fabric of quantitative finance. The first half of the book provides an entry point for graduate students, established researchers and quant practitioners to get acquainted with GP methodology. A systematic and rigorous introduction to both GP fundamentals and most relevant advanced techniques is given, such as kernel choice, shape-constrained GPs, and GP gradients. The second half surveys the broad spectrum of GP applications that demonstrate their versatility and relevance in quantitative finance, including parametric option pricing, GP surrogates for optimal stopping, and GPs for yield and forward curve modeling. The book includes online supplementary materials in the form of half a dozen computational Python and R notebooks that provide the reader direct illustrations of the covered material and are available via a public GitHub repository.
ISBN: 9783031808746
Standard No.: 10.1007/978-3-031-80874-6doiSubjects--Topical Terms:
578740
Finance
--Mathematical models.
LC Class. No.: HG106
Dewey Class. No.: 332.0151
Gaussian process models for quantitative finance
LDR
:02426nmm a2200361 a 4500
001
2409454
003
DE-He213
005
20250307115223.0
006
m d
007
cr nn 008maaau
008
260204s2025 sz s 0 eng d
020
$a
9783031808746
$q
(electronic bk.)
020
$a
9783031808739
$q
(paper)
024
7
$a
10.1007/978-3-031-80874-6
$2
doi
035
$a
978-3-031-80874-6
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
HG106
072
7
$a
PBW
$2
bicssc
072
7
$a
K
$2
bicssc
072
7
$a
MAT003000
$2
bisacsh
072
7
$a
PBW
$2
thema
072
7
$a
K
$2
thema
082
0 4
$a
332.0151
$2
23
090
$a
HG106
$b
.L944 2025
100
1
$a
Ludkovski, Michael.
$3
1908763
245
1 0
$a
Gaussian process models for quantitative finance
$h
[electronic resource] /
$c
by Michael Ludkovski, Jimmy Risk.
260
$a
Cham :
$b
Springer Nature Switzerland :
$b
Imprint: Springer,
$c
2025.
300
$a
xii, 138 p. :
$b
ill. (chiefly color), digital ;
$c
24 cm.
490
1
$a
SpringerBriefs in quantitative finance,
$x
2192-7014
505
0
$a
- 1. Gaussian Process Preliminaries -- 2. Covariance Kernels -- 3. Advanced GP Modeling Topics -- 4. Option Pricing and Sensitivities -- 5. Optimal Stopping -- 6. Non-Parametric Modeling of Financial Structures -- 7. Stochastic Control.
520
$a
This book describes the diverse applications of Gaussian Process (GP) models in mathematical finance. Spurred by the transformative influence of machine learning frameworks, the text aims to integrate GP modeling into the fabric of quantitative finance. The first half of the book provides an entry point for graduate students, established researchers and quant practitioners to get acquainted with GP methodology. A systematic and rigorous introduction to both GP fundamentals and most relevant advanced techniques is given, such as kernel choice, shape-constrained GPs, and GP gradients. The second half surveys the broad spectrum of GP applications that demonstrate their versatility and relevance in quantitative finance, including parametric option pricing, GP surrogates for optimal stopping, and GPs for yield and forward curve modeling. The book includes online supplementary materials in the form of half a dozen computational Python and R notebooks that provide the reader direct illustrations of the covered material and are available via a public GitHub repository.
650
0
$a
Finance
$x
Mathematical models.
$3
578740
650
0
$a
Gaussian processes.
$3
672951
650
1 4
$a
Mathematics in Business, Economics and Finance.
$3
3538573
650
2 4
$a
Stochastic Processes.
$3
906873
650
2 4
$a
Machine Learning.
$3
3382522
650
2 4
$a
Stochastic Systems and Control.
$3
3596108
700
1
$a
Risk, Jimmy.
$3
3782709
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer Nature eBook
830
0
$a
SpringerBriefs in quantitative finance.
$3
2072008
856
4 0
$u
https://doi.org/10.1007/978-3-031-80874-6
950
$a
Mathematics and Statistics (SpringerNature-11649)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9514952
電子資源
11.線上閱覽_V
電子書
EB HG106
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入