Deterministic, stochastic, and deep ...
Cai, Wei.

Linked to FindBook      Google Book      Amazon      博客來     
  • Deterministic, stochastic, and deep learning methods for computational electromagnetics
  • Record Type: Electronic resources : Monograph/item
    Title/Author: Deterministic, stochastic, and deep learning methods for computational electromagnetics/ by Wei Cai.
    Author: Cai, Wei.
    Published: Singapore :Springer Nature Singapore : : 2025.,
    Description: xxiv, 620 p. :ill. (some col.), digital ;24 cm.
    [NT 15003449]: Dielectric constant and fluctuation formulae for molecular dynamics -- Poisson-Boltzmann electrostatics and analytical approximations -- Numerical methods for Poisson-Boltzmann equations -- Random walk stochastic methods for boundary value problems -- Deep Neural Network for Solving PDEs -- Fast algorithms for long-range interactions -- Fast multipole methods for long-range interactions in layered media -- Maxwell equations, potentials, and physical/artificial boundary conditions -- Dyadic Green's functions in layered media -- High-order methods for surface electromagnetic integral equations -- High-order hierarchical N'ed'elec edge elements -- Time-domain methods - discontinuous Galerkin method and Yee scheme -- Scattering in periodic structures and surface plasmons -- Schr¨ odinger equations for waveguides and quantum dots -- Quantum electron transport in semiconductors -- Non-equilibrium Green's function (NEGF) methods for transport -- Numerical methods for Wigner quantum transport -- Hydrodynamic electron transport and finite difference methods -- Transport models in plasma media and numerical methods.
    Contained By: Springer Nature eBook
    Subject: Electromagnetism - Mathematical models. -
    Online resource: https://doi.org/10.1007/978-981-96-0100-4
    ISBN: 9789819601004
Location:  Year:  Volume Number: 
Items
  • 1 records • Pages 1 •
  • 1 records • Pages 1 •
Multimedia
Reviews
Export
pickup library
 
 
Change password
Login