Language:
English
繁體中文
Help
回圖書館首頁
手機版館藏查詢
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
Mathematical theory of compressible ...
~
Kreml, Ondřej.
Linked to FindBook
Google Book
Amazon
博客來
Mathematical theory of compressible fluids on moving domains
Record Type:
Electronic resources : Monograph/item
Title/Author:
Mathematical theory of compressible fluids on moving domains/ by Ondřej Kreml ... [et al.].
other author:
Kreml, Ondřej.
Published:
Cham :Springer Nature Switzerland : : 2025.,
Description:
xv, 260 p. :ill., digital ;24 cm.
[NT 15003449]:
Preface -- Notation, definitions and basic concepts -- Equations of motion -- Barotropic viscous fluid with the Dirichlet boundary conditions -- Barotropic viscous fluid with slip boundary condition -- Weak-strong uniqueness -- Existence of strong solutions via energy methods -- Existence of strong solutions in the Lp - Lq framework -- The full system -- Index -- References.
Contained By:
Springer Nature eBook
Subject:
Fluid mechanics - Mathematics. -
Online resource:
https://doi.org/10.1007/978-3-031-83324-3
ISBN:
9783031833243
Mathematical theory of compressible fluids on moving domains
Mathematical theory of compressible fluids on moving domains
[electronic resource] /by Ondřej Kreml ... [et al.]. - Cham :Springer Nature Switzerland :2025. - xv, 260 p. :ill., digital ;24 cm. - Lecture notes in mathematical fluid mechanics,2510-1382. - Lecture notes in mathematical fluid mechanics..
Preface -- Notation, definitions and basic concepts -- Equations of motion -- Barotropic viscous fluid with the Dirichlet boundary conditions -- Barotropic viscous fluid with slip boundary condition -- Weak-strong uniqueness -- Existence of strong solutions via energy methods -- Existence of strong solutions in the Lp - Lq framework -- The full system -- Index -- References.
This monograph presents the existence and properties of both weak and strong solutions to the problems of the flow of a compressible fluid in a domain whose motion is prescribed. Chapters build upon the research of Lions and Feireisl with regards to weak solutions to the compressible version of the Navier-Stokes system, and extend it to problems on moving domains. The authors also show the existence of strong solutions to the compressible Navier-Stokes system for either a small time interval or small data. The opening chapters introduce the notation, tools, and problems covered in the rest of the book, emphasizing pedagogy and accessibility throughout. Mathematical Theory of Compressible Fluids on Moving Domains will be suitable for graduate students and researchers interested in mathematical fluid mechanics.
ISBN: 9783031833243
Standard No.: 10.1007/978-3-031-83324-3doiSubjects--Topical Terms:
713584
Fluid mechanics
--Mathematics.
LC Class. No.: QA901
Dewey Class. No.: 620.106
Mathematical theory of compressible fluids on moving domains
LDR
:02260nmm a2200337 a 4500
001
2409437
003
DE-He213
005
20250227115232.0
006
m d
007
cr nn 008maaau
008
260204s2025 sz s 0 eng d
020
$a
9783031833243
$q
(electronic bk.)
020
$a
9783031833236
$q
(paper)
024
7
$a
10.1007/978-3-031-83324-3
$2
doi
035
$a
978-3-031-83324-3
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA901
072
7
$a
PBKF
$2
bicssc
072
7
$a
MAT037000
$2
bisacsh
072
7
$a
PBKF
$2
thema
082
0 4
$a
620.106
$2
23
090
$a
QA901
$b
.M426 2025
245
0 0
$a
Mathematical theory of compressible fluids on moving domains
$h
[electronic resource] /
$c
by Ondřej Kreml ... [et al.].
260
$a
Cham :
$b
Springer Nature Switzerland :
$b
Imprint: Birkhäuser,
$c
2025.
300
$a
xv, 260 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Lecture notes in mathematical fluid mechanics,
$x
2510-1382
505
0
$a
Preface -- Notation, definitions and basic concepts -- Equations of motion -- Barotropic viscous fluid with the Dirichlet boundary conditions -- Barotropic viscous fluid with slip boundary condition -- Weak-strong uniqueness -- Existence of strong solutions via energy methods -- Existence of strong solutions in the Lp - Lq framework -- The full system -- Index -- References.
520
$a
This monograph presents the existence and properties of both weak and strong solutions to the problems of the flow of a compressible fluid in a domain whose motion is prescribed. Chapters build upon the research of Lions and Feireisl with regards to weak solutions to the compressible version of the Navier-Stokes system, and extend it to problems on moving domains. The authors also show the existence of strong solutions to the compressible Navier-Stokes system for either a small time interval or small data. The opening chapters introduce the notation, tools, and problems covered in the rest of the book, emphasizing pedagogy and accessibility throughout. Mathematical Theory of Compressible Fluids on Moving Domains will be suitable for graduate students and researchers interested in mathematical fluid mechanics.
650
0
$a
Fluid mechanics
$x
Mathematics.
$3
713584
650
1 4
$a
Functional Analysis.
$3
893943
650
2 4
$a
Differential Equations.
$3
907890
650
2 4
$a
Numerical Analysis.
$3
892626
650
2 4
$a
Mathematical Physics.
$3
1542352
700
1
$a
Kreml, Ondřej.
$3
3782681
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer Nature eBook
830
0
$a
Lecture notes in mathematical fluid mechanics.
$3
3383562
856
4 0
$u
https://doi.org/10.1007/978-3-031-83324-3
950
$a
Mathematics and Statistics (SpringerNature-11649)
based on 0 review(s)
Location:
ALL
電子資源
Year:
Volume Number:
Items
1 records • Pages 1 •
1
Inventory Number
Location Name
Item Class
Material type
Call number
Usage Class
Loan Status
No. of reservations
Opac note
Attachments
W9514935
電子資源
11.線上閱覽_V
電子書
EB QA901
一般使用(Normal)
On shelf
0
1 records • Pages 1 •
1
Multimedia
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login