Practical statistical learning and d...
Awe, O. Olawale.

Linked to FindBook      Google Book      Amazon      博客來     
  • Practical statistical learning and data science methods = case studies from LISA 2020 Global Network, USA /
  • Record Type: Electronic resources : Monograph/item
    Title/Author: Practical statistical learning and data science methods/ edited by O. Olawale Awe, Eric A. Vance.
    Reminder of title: case studies from LISA 2020 Global Network, USA /
    other author: Awe, O. Olawale.
    Published: Cham :Springer Nature Switzerland : : 2025.,
    Description: xxix, 752 p. :ill. (chiefly color), digital ;24 cm.
    [NT 15003449]: Effects of Imputation Techniques on Predictive Performance of Supervised Machine Learning Algorithms: Empirical Insights from Health Data Classification. -- Predicting Air Quality in an Urban African City Using Four Comparative Novel Time Series Models. -- Obesity Classification Using Weighted Hard and Soft Voting Ensemble Machine Learning Classifiers. -- Predictive Modeling for Disease Diagnosis Using Calibrated Algorithms: A Comparative Study. -- Predicting Precipitation Dynamics in Africa Using Deep Learning Models. -- Enhancing Predictive Performance through Optimized Ensemble Stacking for Imbalanced Classification Problems. -- A Comparative Exploration of SHAP and LIME for Enhancing the Interpretability of Machine Learning Models in BMI Classification. -- Decision Tree Planning Strategies for Predicting Obesity. -- Clustering Multiple Time Series with SSA. -- Spine-Based Calibration for Classification Algorithms: An Experimental Comparison of Various Imbalanced Ratios. -- Exploring the Applicability of Advanced Exponential Smoothing and NN Models for Climate Time Series Forecasting: Insights and Changepoint Prediction in the Brazilian Context. -- A Comprehensive Forecasting Experiment on Temperature Trends Across Thirty-Two American Countries. -- A Comparative Analysis of Sampling Methods for Imbalanced Data Classification in Machine Learning Health Applications. -- Comparative Analysis of MCC, F1-Score, and Balanced Accuracy Metrics for Imbalanced Health Data Classification. -- Basics of R- Shiny for developing Interactive Visualizations.
    Contained By: Springer Nature eBook
    Subject: Statistics. -
    Online resource: https://doi.org/10.1007/978-3-031-72215-8
    ISBN: 9783031722158
Location:  Year:  Volume Number: 
Items
  • 1 records • Pages 1 •
  • 1 records • Pages 1 •
Multimedia
Reviews
Export
pickup library
 
 
Change password
Login