Job scheduling strategies for parall...
JSSPP (Workshop) (2024 :)

Linked to FindBook      Google Book      Amazon      博客來     
  • Job scheduling strategies for parallel processing = 27th International Workshop, JSSPP 2024. San Francisco, CA, USA, May 31, 2024 : revised selected papers /
  • Record Type: Electronic resources : Monograph/item
    Title/Author: Job scheduling strategies for parallel processing/ edited by Dalibor Klusáček, Julita Corbalán, Gonzalo P. Rodrigo.
    Reminder of title: 27th International Workshop, JSSPP 2024. San Francisco, CA, USA, May 31, 2024 : revised selected papers /
    remainder title: JSSPP 2024
    other author: Klusáček, Dalibor.
    corporate name: JSSPP (Workshop)
    Published: Cham :Springer Nature Switzerland : : 2025.,
    Description: xi, 197 p. :ill. (chiefly color), digital ;24 cm.
    [NT 15003449]: Technical papers. -- Real-life HPC Workload Trace Featuring Refined Job Runtime Estimates. -- An Empirical Study of Machine Learning-based Synthetic Job Trace Generation Methods. -- Clustering Based Job Runtime Prediction for Backfilling Using Classification. -- Launchpad: Learning to Schedule Using Offline and Online RL Methods. -- Radical-Cylon: A Heterogeneous Data Pipeline for Scientific Computing. -- Evaluation of Heuristic Task-to-Thread Mapping Using Static and Dynamic Approaches. -- Challenges in parallel matrix chain multiplication. -- A node selection method for on-demand job execution with considering deadline constraints. -- Maximizing Energy Budget Utilization Using Dynamic Power Cap Control. -- Run your HPC jobs in Eco-Mode: revealing the potential of user-assisted power capping in supercomputing systems.
    Contained By: Springer Nature eBook
    Subject: Parallel processing (Electronic computers) - Congresses. -
    Online resource: https://doi.org/10.1007/978-3-031-74430-3
    ISBN: 9783031744303
Location:  Year:  Volume Number: 
Items
  • 1 records • Pages 1 •
  • 1 records • Pages 1 •
Multimedia
Reviews
Export
pickup library
 
 
Change password
Login