語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
AI for brain lesion detection and tr...
~
BONBID-HIE (Challenge) (2023 :)
FindBook
Google Book
Amazon
博客來
AI for brain lesion detection and trauma video action recognition = first BONBID-HIE Lesion Segmentation Challenge and First Trauma Thompson Challenge, held in conjunction with MICCAI 2023, Vancouver, BC, Canada, October 16 and 12, 2023 : proceedings /
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
AI for brain lesion detection and trauma video action recognition/ edited by Rina Bao ... [et al.].
其他題名:
first BONBID-HIE Lesion Segmentation Challenge and First Trauma Thompson Challenge, held in conjunction with MICCAI 2023, Vancouver, BC, Canada, October 16 and 12, 2023 : proceedings /
其他題名:
MICCAI 2023
其他作者:
Bao, Rina.
團體作者:
BONBID-HIE (Challenge)
出版者:
Cham :Springer Nature Switzerland : : 2025.,
面頁冊數:
xiv, 95 p. :ill. (some col.), digital ;24 cm.
內容註:
BONBID-HIE 2023 -- Fusion of Deep and Local Features Using Random Forests for Neonatal HIE Segmentation -- Enhancing Lesion Segmentation in the BONBID-HIE Challenge: An Ensemble Strategy -- An Ensemble Approach for Segmentation of Neonatal HIE lesions -- Improving Segmentation of Hypoxic Ischemic Encephalopathy Lesions by Heavy Data Augmentation: Contribution to the BONBID Challenge -- A Deep Neural Network Approach for the Lesion Segmentation from Neonatal Brain Magnetic Resonance Imaging -- SegResNet based Reciprocal Transformation for BONBID-HIE Lesion Segmentation -- Trauma THOMPSON 2023 -- Overview of the Trauma THOMPSON Challenge at MICCAI 2023 -- The Trauma THOMPSON Challenge Report MICCAI 2023 -- Action Recognition and Action Anticipation Tasks in the Trauma THOMPSON Challenge Technical Report -- QuIIL at T3 challenge: Towards Automation in Life-Saving Intervention Procedures from First-Person View.
Contained By:
Springer Nature eBook
標題:
Diagnostic imaging - Congresses. -
電子資源:
https://doi.org/10.1007/978-3-031-71626-3
ISBN:
9783031716263
AI for brain lesion detection and trauma video action recognition = first BONBID-HIE Lesion Segmentation Challenge and First Trauma Thompson Challenge, held in conjunction with MICCAI 2023, Vancouver, BC, Canada, October 16 and 12, 2023 : proceedings /
AI for brain lesion detection and trauma video action recognition
first BONBID-HIE Lesion Segmentation Challenge and First Trauma Thompson Challenge, held in conjunction with MICCAI 2023, Vancouver, BC, Canada, October 16 and 12, 2023 : proceedings /[electronic resource] :MICCAI 2023edited by Rina Bao ... [et al.]. - Cham :Springer Nature Switzerland :2025. - xiv, 95 p. :ill. (some col.), digital ;24 cm. - Lecture notes in computer science,145671611-3349 ;. - Lecture notes in computer science ;14567..
BONBID-HIE 2023 -- Fusion of Deep and Local Features Using Random Forests for Neonatal HIE Segmentation -- Enhancing Lesion Segmentation in the BONBID-HIE Challenge: An Ensemble Strategy -- An Ensemble Approach for Segmentation of Neonatal HIE lesions -- Improving Segmentation of Hypoxic Ischemic Encephalopathy Lesions by Heavy Data Augmentation: Contribution to the BONBID Challenge -- A Deep Neural Network Approach for the Lesion Segmentation from Neonatal Brain Magnetic Resonance Imaging -- SegResNet based Reciprocal Transformation for BONBID-HIE Lesion Segmentation -- Trauma THOMPSON 2023 -- Overview of the Trauma THOMPSON Challenge at MICCAI 2023 -- The Trauma THOMPSON Challenge Report MICCAI 2023 -- Action Recognition and Action Anticipation Tasks in the Trauma THOMPSON Challenge Technical Report -- QuIIL at T3 challenge: Towards Automation in Life-Saving Intervention Procedures from First-Person View.
This book constitutes the proceedings of the First BONBID-HIE Lesion Segmentation Challenge and the First Trauma Thompson Challenge, held in conjunction with MICCAI 2023, in Vancouver, BC, Canada, during October 2023. For BONBID-HIE 2023 Challenge 6 papers have been accepted out of 14 submissions. They span a broad array of approaches leveraging anatomical information about HIE, data augmentation, training strategies, model architecture, and integration with traditional machine learning methods. For the TTC 2023 Trauma Thompson Challenge 4 accepted contributions are included in this book. They deal with advancements in machine learning methods and their practical applications in addressing small and diffuse lesions in HIE segmentation.
ISBN: 9783031716263
Standard No.: 10.1007/978-3-031-71626-3doiSubjects--Topical Terms:
879904
Diagnostic imaging
--Congresses.
LC Class. No.: RC78.7.D53
Dewey Class. No.: 616.0754
AI for brain lesion detection and trauma video action recognition = first BONBID-HIE Lesion Segmentation Challenge and First Trauma Thompson Challenge, held in conjunction with MICCAI 2023, Vancouver, BC, Canada, October 16 and 12, 2023 : proceedings /
LDR
:02955nmm a2200349 a 4500
001
2407870
003
DE-He213
005
20241024125756.0
006
m d
007
cr nn 008maaau
008
260204s2025 sz s 0 eng d
020
$a
9783031716263
$q
(electronic bk.)
020
$a
9783031716256
$q
(paper)
024
7
$a
10.1007/978-3-031-71626-3
$2
doi
035
$a
978-3-031-71626-3
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
RC78.7.D53
072
7
$a
UYT
$2
bicssc
072
7
$a
COM016000
$2
bisacsh
072
7
$a
UYT
$2
thema
082
0 4
$a
616.0754
$2
23
090
$a
RC78.7.D53
$b
B699 2023
111
2
$a
BONBID-HIE (Challenge)
$n
(1st :
$d
2023 :
$c
Vancouver, B.C.)
$3
3780012
245
1 0
$a
AI for brain lesion detection and trauma video action recognition
$h
[electronic resource] :
$b
first BONBID-HIE Lesion Segmentation Challenge and First Trauma Thompson Challenge, held in conjunction with MICCAI 2023, Vancouver, BC, Canada, October 16 and 12, 2023 : proceedings /
$c
edited by Rina Bao ... [et al.].
246
3
$a
MICCAI 2023
260
$a
Cham :
$b
Springer Nature Switzerland :
$b
Imprint: Springer,
$c
2025.
300
$a
xiv, 95 p. :
$b
ill. (some col.), digital ;
$c
24 cm.
490
1
$a
Lecture notes in computer science,
$x
1611-3349 ;
$v
14567
505
0
$a
BONBID-HIE 2023 -- Fusion of Deep and Local Features Using Random Forests for Neonatal HIE Segmentation -- Enhancing Lesion Segmentation in the BONBID-HIE Challenge: An Ensemble Strategy -- An Ensemble Approach for Segmentation of Neonatal HIE lesions -- Improving Segmentation of Hypoxic Ischemic Encephalopathy Lesions by Heavy Data Augmentation: Contribution to the BONBID Challenge -- A Deep Neural Network Approach for the Lesion Segmentation from Neonatal Brain Magnetic Resonance Imaging -- SegResNet based Reciprocal Transformation for BONBID-HIE Lesion Segmentation -- Trauma THOMPSON 2023 -- Overview of the Trauma THOMPSON Challenge at MICCAI 2023 -- The Trauma THOMPSON Challenge Report MICCAI 2023 -- Action Recognition and Action Anticipation Tasks in the Trauma THOMPSON Challenge Technical Report -- QuIIL at T3 challenge: Towards Automation in Life-Saving Intervention Procedures from First-Person View.
520
$a
This book constitutes the proceedings of the First BONBID-HIE Lesion Segmentation Challenge and the First Trauma Thompson Challenge, held in conjunction with MICCAI 2023, in Vancouver, BC, Canada, during October 2023. For BONBID-HIE 2023 Challenge 6 papers have been accepted out of 14 submissions. They span a broad array of approaches leveraging anatomical information about HIE, data augmentation, training strategies, model architecture, and integration with traditional machine learning methods. For the TTC 2023 Trauma Thompson Challenge 4 accepted contributions are included in this book. They deal with advancements in machine learning methods and their practical applications in addressing small and diffuse lesions in HIE segmentation.
650
0
$a
Diagnostic imaging
$v
Congresses.
$3
879904
650
0
$a
Artificial intelligence
$x
Medical applications
$x
Congresses.
$3
660945
650
1 4
$a
Computer Imaging, Vision, Pattern Recognition and Graphics.
$3
890871
650
2 4
$a
Artificial Intelligence.
$3
769149
700
1
$a
Bao, Rina.
$3
3780013
710
2
$a
SpringerLink (Online service)
$3
836513
711
2
$a
International Conference on Medical Image Computing and Computer-Assisted Intervention
$n
(26th :
$d
2023 :
$c
Vancouver, B.C.)
$3
3667474
773
0
$t
Springer Nature eBook
830
0
$a
Lecture notes in computer science ;
$v
14567.
$3
3780014
856
4 0
$u
https://doi.org/10.1007/978-3-031-71626-3
950
$a
Computer Science (SpringerNature-11645)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9513368
電子資源
11.線上閱覽_V
電子書
EB RC78.7.D53
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入