語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Probability for information technology
~
Suh, Changho.
FindBook
Google Book
Amazon
博客來
Probability for information technology
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Probability for information technology/ by Changho Suh.
作者:
Suh, Changho.
出版者:
Singapore :Springer Nature Singapore : : 2025.,
面頁冊數:
xii, 353 p. :ill. (some col.), digital ;24 cm.
內容註:
Preface -- Acknowledgements -- Part I. Basic concepts of probability -- Chapter 1. Overview of the book -- Chapter 2. Sample space and events -- Chapter 3. Monty Hall problem and Python implementation -- Problem Set 1 -- Chapter 4. Conditional probability and total probability law -- Chapter 5. Independence -- Chapter 6. Coupon collector problem and Python implementation -- Problem Set 2 -- Chapter 7. Random variables -- Chapter 8. Expectation -- Chapter 9. BitTorrent and Python implementation -- Chapter 10.Variance and Chebyshev's inequality -- Problem Set 3 -- Chapter 11.Continuous random variables -- Chapter 12. Gaussian random variables -- Problem Set 4 -- Part II. Introductory random processes and key principles -- Chapter 13. Introduction to random processes -- Chapter 14. Maximum A Posteriori (MAP) principle -- Chapter 15. MAP: Multiple observations -- Chapter 16. MAP: Performance analysis -- Chapter 17. MAP: Cancer prediciton and Python implementation -- Problem Set 5 -- Chapter 18. Maximum Likelihood Estimation (MLE) -- Chapter 19. MLE: Law of large numbers -- Chapter 20. MLE: Gaussian distribution -- Chapter 21. MLE: Gaussian distribution estimation and Python implementation -- Chapter 22. Central limit theorem -- Problem Set 6 -- Part III. Information Technology Applications -- Chapter 23. Communication: Probabilistic modeling -- Chapter 24. Communication: MAP principle -- Chapter 25. Communication: MAP under multiple observations -- Chapter 26. Communication: Repetition coding and Python implementation -- Problem Set 7 -- Chapter 27. Social networks: Probabilistic modeling -- Chapter 28. Social networks: ML principle -- Chapter 29. Social networks: Community detecition and Python implementation -- Problem Set 8 -- Chapter 30. Speech recognition: Probabilistic modeling -- Chapter 31. Speech recognition: MAP principle -- Chapter 32. Speech recognition: Viterbi algorithm -- Chapter 33. Speech recognition: Python implementation -- Problem Set 9 -- Appendix A: Python basics -- Bibliography -- Index.
Contained By:
Springer Nature eBook
標題:
Computer science - Statistical methods. -
電子資源:
https://doi.org/10.1007/978-981-97-4032-1
ISBN:
9789819740321
Probability for information technology
Suh, Changho.
Probability for information technology
[electronic resource] /by Changho Suh. - Singapore :Springer Nature Singapore :2025. - xii, 353 p. :ill. (some col.), digital ;24 cm.
Preface -- Acknowledgements -- Part I. Basic concepts of probability -- Chapter 1. Overview of the book -- Chapter 2. Sample space and events -- Chapter 3. Monty Hall problem and Python implementation -- Problem Set 1 -- Chapter 4. Conditional probability and total probability law -- Chapter 5. Independence -- Chapter 6. Coupon collector problem and Python implementation -- Problem Set 2 -- Chapter 7. Random variables -- Chapter 8. Expectation -- Chapter 9. BitTorrent and Python implementation -- Chapter 10.Variance and Chebyshev's inequality -- Problem Set 3 -- Chapter 11.Continuous random variables -- Chapter 12. Gaussian random variables -- Problem Set 4 -- Part II. Introductory random processes and key principles -- Chapter 13. Introduction to random processes -- Chapter 14. Maximum A Posteriori (MAP) principle -- Chapter 15. MAP: Multiple observations -- Chapter 16. MAP: Performance analysis -- Chapter 17. MAP: Cancer prediciton and Python implementation -- Problem Set 5 -- Chapter 18. Maximum Likelihood Estimation (MLE) -- Chapter 19. MLE: Law of large numbers -- Chapter 20. MLE: Gaussian distribution -- Chapter 21. MLE: Gaussian distribution estimation and Python implementation -- Chapter 22. Central limit theorem -- Problem Set 6 -- Part III. Information Technology Applications -- Chapter 23. Communication: Probabilistic modeling -- Chapter 24. Communication: MAP principle -- Chapter 25. Communication: MAP under multiple observations -- Chapter 26. Communication: Repetition coding and Python implementation -- Problem Set 7 -- Chapter 27. Social networks: Probabilistic modeling -- Chapter 28. Social networks: ML principle -- Chapter 29. Social networks: Community detecition and Python implementation -- Problem Set 8 -- Chapter 30. Speech recognition: Probabilistic modeling -- Chapter 31. Speech recognition: MAP principle -- Chapter 32. Speech recognition: Viterbi algorithm -- Chapter 33. Speech recognition: Python implementation -- Problem Set 9 -- Appendix A: Python basics -- Bibliography -- Index.
This book introduces probabilistic modelling and to study its role in solving a wide variety of engineering problems that arise in Information Technology (IT) The book consists of three parts. The first introduces the basic concepts of probability: sample space, events, conditional probability, independence, total probability law, random variables, probability mass functions, density functions and expectation. In the second part, we study the concept of random processes, as well as key principles such as Maximum A Posteriori (MAP) estimation, Maximum Likelihood (ML) estimation, law of large numbers and central limit theorem. Using the language and principles acquired in the prior parts, the last discusses IT applications chosen from communication, social networks and speech recognition. The book puts a special emphasis on "probability in action": probabilistic concepts are taught through many running examples, killer applications and Python coding exercises. One defining feature of this book is that it succinctly relates the "story" of how the key principles of probability play a role, via classical and trending IT applications. All the key "plots" involved in the story are coherently developed with the help of tightly-coupled exercise problem sets, and the associated fundamentals are explored mostly from first principles. Another key feature is that it includes programming implementation of toy examples and various algorithms inspired by fundamentals. It also provides a brief tutorial of the used programming tool: Python. This book does not follow a traditional book-style organization, but is streamlined via a series of lecture notes that are intimately related, centered around coherent storylines and themes. It serves as a textbook mainly for a sophomore-level undergraduate course, yet is also suitable for a junior or senior-level undergraduate course. Readers benefit from having some mathematical maturity and exposure to programming. But the background can be supplemented by almost self-contained materials, as well as by numerous exercise problems intended for elaborating on non-trivial concepts. In addition, Part III for IT applications should provide motivation and insights to students and even professional engineers who are interested in the field.
ISBN: 9789819740321
Standard No.: 10.1007/978-981-97-4032-1doiSubjects--Topical Terms:
3299456
Computer science
--Statistical methods.
LC Class. No.: QA76.9.M35
Dewey Class. No.: 004.01519
Probability for information technology
LDR
:05360nmm a2200349 a 4500
001
2407756
003
DE-He213
005
20241117120810.0
006
m d
007
cr nn 008maaau
008
260204s2025 si s 0 eng d
020
$a
9789819740321
$q
(electronic bk.)
020
$a
9789819740314
$q
(paper)
024
7
$a
10.1007/978-981-97-4032-1
$2
doi
035
$a
978-981-97-4032-1
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA76.9.M35
072
7
$a
UYAM
$2
bicssc
072
7
$a
PBT
$2
bicssc
072
7
$a
COM014000
$2
bisacsh
072
7
$a
UYAM
$2
thema
072
7
$a
PBT
$2
thema
082
0 4
$a
004.01519
$2
23
090
$a
QA76.9.M35
$b
S947 2025
100
1
$a
Suh, Changho.
$3
3661546
245
1 0
$a
Probability for information technology
$h
[electronic resource] /
$c
by Changho Suh.
260
$a
Singapore :
$b
Springer Nature Singapore :
$b
Imprint: Springer,
$c
2025.
300
$a
xii, 353 p. :
$b
ill. (some col.), digital ;
$c
24 cm.
505
0
$a
Preface -- Acknowledgements -- Part I. Basic concepts of probability -- Chapter 1. Overview of the book -- Chapter 2. Sample space and events -- Chapter 3. Monty Hall problem and Python implementation -- Problem Set 1 -- Chapter 4. Conditional probability and total probability law -- Chapter 5. Independence -- Chapter 6. Coupon collector problem and Python implementation -- Problem Set 2 -- Chapter 7. Random variables -- Chapter 8. Expectation -- Chapter 9. BitTorrent and Python implementation -- Chapter 10.Variance and Chebyshev's inequality -- Problem Set 3 -- Chapter 11.Continuous random variables -- Chapter 12. Gaussian random variables -- Problem Set 4 -- Part II. Introductory random processes and key principles -- Chapter 13. Introduction to random processes -- Chapter 14. Maximum A Posteriori (MAP) principle -- Chapter 15. MAP: Multiple observations -- Chapter 16. MAP: Performance analysis -- Chapter 17. MAP: Cancer prediciton and Python implementation -- Problem Set 5 -- Chapter 18. Maximum Likelihood Estimation (MLE) -- Chapter 19. MLE: Law of large numbers -- Chapter 20. MLE: Gaussian distribution -- Chapter 21. MLE: Gaussian distribution estimation and Python implementation -- Chapter 22. Central limit theorem -- Problem Set 6 -- Part III. Information Technology Applications -- Chapter 23. Communication: Probabilistic modeling -- Chapter 24. Communication: MAP principle -- Chapter 25. Communication: MAP under multiple observations -- Chapter 26. Communication: Repetition coding and Python implementation -- Problem Set 7 -- Chapter 27. Social networks: Probabilistic modeling -- Chapter 28. Social networks: ML principle -- Chapter 29. Social networks: Community detecition and Python implementation -- Problem Set 8 -- Chapter 30. Speech recognition: Probabilistic modeling -- Chapter 31. Speech recognition: MAP principle -- Chapter 32. Speech recognition: Viterbi algorithm -- Chapter 33. Speech recognition: Python implementation -- Problem Set 9 -- Appendix A: Python basics -- Bibliography -- Index.
520
$a
This book introduces probabilistic modelling and to study its role in solving a wide variety of engineering problems that arise in Information Technology (IT) The book consists of three parts. The first introduces the basic concepts of probability: sample space, events, conditional probability, independence, total probability law, random variables, probability mass functions, density functions and expectation. In the second part, we study the concept of random processes, as well as key principles such as Maximum A Posteriori (MAP) estimation, Maximum Likelihood (ML) estimation, law of large numbers and central limit theorem. Using the language and principles acquired in the prior parts, the last discusses IT applications chosen from communication, social networks and speech recognition. The book puts a special emphasis on "probability in action": probabilistic concepts are taught through many running examples, killer applications and Python coding exercises. One defining feature of this book is that it succinctly relates the "story" of how the key principles of probability play a role, via classical and trending IT applications. All the key "plots" involved in the story are coherently developed with the help of tightly-coupled exercise problem sets, and the associated fundamentals are explored mostly from first principles. Another key feature is that it includes programming implementation of toy examples and various algorithms inspired by fundamentals. It also provides a brief tutorial of the used programming tool: Python. This book does not follow a traditional book-style organization, but is streamlined via a series of lecture notes that are intimately related, centered around coherent storylines and themes. It serves as a textbook mainly for a sophomore-level undergraduate course, yet is also suitable for a junior or senior-level undergraduate course. Readers benefit from having some mathematical maturity and exposure to programming. But the background can be supplemented by almost self-contained materials, as well as by numerous exercise problems intended for elaborating on non-trivial concepts. In addition, Part III for IT applications should provide motivation and insights to students and even professional engineers who are interested in the field.
650
0
$a
Computer science
$x
Statistical methods.
$3
3299456
650
1 4
$a
Probability and Statistics in Computer Science.
$3
891072
650
2 4
$a
Digital and New Media.
$3
3539000
650
2 4
$a
Data Science.
$3
3538937
650
2 4
$a
Machine Learning.
$3
3382522
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer Nature eBook
856
4 0
$u
https://doi.org/10.1007/978-981-97-4032-1
950
$a
Computer Science (SpringerNature-11645)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9513254
電子資源
11.線上閱覽_V
電子書
EB QA76.9.M35
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入