語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Shift Variant Image Deconvolution Us...
~
Ghosh, Arnab.
FindBook
Google Book
Amazon
博客來
Shift Variant Image Deconvolution Using Deep Learning.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Shift Variant Image Deconvolution Using Deep Learning./
作者:
Ghosh, Arnab.
出版者:
Ann Arbor : ProQuest Dissertations & Theses, : 2023,
面頁冊數:
71 p.
附註:
Source: Masters Abstracts International, Volume: 85-06.
Contained By:
Masters Abstracts International85-06.
標題:
Computer science. -
電子資源:
https://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=30818612
ISBN:
9798381185393
Shift Variant Image Deconvolution Using Deep Learning.
Ghosh, Arnab.
Shift Variant Image Deconvolution Using Deep Learning.
- Ann Arbor : ProQuest Dissertations & Theses, 2023 - 71 p.
Source: Masters Abstracts International, Volume: 85-06.
Thesis (M.S.)--Rochester Institute of Technology, 2023.
Image Deconvolution is a well-studied problem that seeks to restore the original sharp image from a blurry image formed in the imaging system. The Point Spread function(PSF) of a particular system can be used to infer the original sharp image given the blurred image. However, such a problem is usually simplified by making the shift-invariant assumption over the Field of View (FOV). Realistic systems are shift-variant; the optical system's point spread function depends on the position of the object point from the principal axis. For example, asymmetrical lenses can cause space variant aberration. In this paper, we first simulate our shift-variant aberrations by generating Point Spread Functions using the Seidel Aberration polynomial and use a shift-variant forward blur model to generate our shift-variant blurred image pairs. We then introduce, ShiVaNet. It is a two-stage architecture that builds upon the Learnable Wiener Deconvolution block as described in Yanny, Monakhova, Shuai, and Waller (Yanny et al.) by introducing Simplified Channel Attention and Transpose Attention to improve the performance of the module. We also devise a novel UNet refinement block by fusing a ConvNext-V2 block with Channel Attention and coupling with Transposed Attention Zamir, Arora, Khan, Hayat, Khan, and Yang (Zamir et al.). Our model performs better than state-of-the-art restoration models by a factor of 0.2 dB Peak Signal to Noise Ratio.
ISBN: 9798381185393Subjects--Topical Terms:
523869
Computer science.
Subjects--Index Terms:
Aberration correction
Shift Variant Image Deconvolution Using Deep Learning.
LDR
:02596nmm a2200397 4500
001
2403768
005
20241125080213.5
006
m o d
007
cr#unu||||||||
008
251215s2023 ||||||||||||||||| ||eng d
020
$a
9798381185393
035
$a
(MiAaPQ)AAI30818612
035
$a
AAI30818612
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Ghosh, Arnab.
$3
3701026
245
1 0
$a
Shift Variant Image Deconvolution Using Deep Learning.
260
1
$a
Ann Arbor :
$b
ProQuest Dissertations & Theses,
$c
2023
300
$a
71 p.
500
$a
Source: Masters Abstracts International, Volume: 85-06.
500
$a
Advisor: Swartzlander, Grover.
502
$a
Thesis (M.S.)--Rochester Institute of Technology, 2023.
520
$a
Image Deconvolution is a well-studied problem that seeks to restore the original sharp image from a blurry image formed in the imaging system. The Point Spread function(PSF) of a particular system can be used to infer the original sharp image given the blurred image. However, such a problem is usually simplified by making the shift-invariant assumption over the Field of View (FOV). Realistic systems are shift-variant; the optical system's point spread function depends on the position of the object point from the principal axis. For example, asymmetrical lenses can cause space variant aberration. In this paper, we first simulate our shift-variant aberrations by generating Point Spread Functions using the Seidel Aberration polynomial and use a shift-variant forward blur model to generate our shift-variant blurred image pairs. We then introduce, ShiVaNet. It is a two-stage architecture that builds upon the Learnable Wiener Deconvolution block as described in Yanny, Monakhova, Shuai, and Waller (Yanny et al.) by introducing Simplified Channel Attention and Transpose Attention to improve the performance of the module. We also devise a novel UNet refinement block by fusing a ConvNext-V2 block with Channel Attention and coupling with Transposed Attention Zamir, Arora, Khan, Hayat, Khan, and Yang (Zamir et al.). Our model performs better than state-of-the-art restoration models by a factor of 0.2 dB Peak Signal to Noise Ratio.
590
$a
School code: 0465.
650
4
$a
Computer science.
$3
523869
650
4
$a
Computational physics.
$3
3343998
653
$a
Aberration correction
653
$a
Computational imaging
653
$a
Deblurring
653
$a
Deep learning
653
$a
Image restoration
653
$a
Seidel polynomials
690
$a
0800
690
$a
0984
690
$a
0216
710
2
$a
Rochester Institute of Technology.
$b
Imaging Science.
$3
1019498
773
0
$t
Masters Abstracts International
$g
85-06.
790
$a
0465
791
$a
M.S.
792
$a
2023
793
$a
English
856
4 0
$u
https://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=30818612
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9512088
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入