語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Springs and Wings: A Robotic Study o...
~
Lynch, James Edmund.
FindBook
Google Book
Amazon
博客來
Springs and Wings: A Robotic Study of the Insect Flight System.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Springs and Wings: A Robotic Study of the Insect Flight System./
作者:
Lynch, James Edmund.
出版者:
Ann Arbor : ProQuest Dissertations & Theses, : 2023,
面頁冊數:
215 p.
附註:
Source: Dissertations Abstracts International, Volume: 85-01, Section: B.
Contained By:
Dissertations Abstracts International85-01B.
標題:
Mechanical engineering. -
電子資源:
https://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=30523478
ISBN:
9798379897239
Springs and Wings: A Robotic Study of the Insect Flight System.
Lynch, James Edmund.
Springs and Wings: A Robotic Study of the Insect Flight System.
- Ann Arbor : ProQuest Dissertations & Theses, 2023 - 215 p.
Source: Dissertations Abstracts International, Volume: 85-01, Section: B.
Thesis (Ph.D.)--University of California, San Diego, 2023.
.
In the last decade, roboticists have had significant success building centimeter-scale flapping wing micro aerial vehicles (FWMAVs) inspired by the flight of insects. Evidence suggests that insects store and release energy in the thoracic exoskeleton to improve energy efficiency by flapping at resonance. Insect-inspired micro flying robots have also leveraged resonance to improve efficiency, but they have discovered that operating at the resonant frequency leads to issues with flight control. This research seeks to investigate the roles that elasticity, aerodynamics, and muscle dynamics play in the emergent dynamics of flapping flight by studying elastic flapping spring-wing systems using dynamically-scaled robophysical models of spring-wings. Studying the dynamics of a robot with comparable features enables the validation of models from biology that are otherwise difficult to test in living insects, the generation of new hypotheses, and the development of novel FWMAV designs.In Chapter 1, the spring-wing system is characterized via a nonlinear spring-mass-damper model. A robophysical model validates that such systems gain energetic benefits from operating at resonance, but reveals that the benefit scales with an underappreciated dimensionless ratio of inertial to aerodynamic forces, the Weis-Fogh number. We show through dimensional analysis that any real system, living or robotic, must balance the mechanical advantage gained from operating at resonance with diminishing returns in efficiency. Chapter 2 further explores the impact of the Weis-Fogh number on flapping dynamics, showing that responsiveness to control inputs is reduced and resistance to environmental perturbations is increased as the dimensionless ratio increases. Together with calculations of Weis-Fogh number in insects, these studies illustrate tradeoffs that drive evolution of resonant flight in nature and guide development of future FWMAVs with elastic energy exchange.In the second half of the thesis, muscle dynamics are introduced in the form of a simplified model of self-excited asynchronous insect muscle. In Chapter 3, a form of velocity feedback, adapted from experiments on insect flight muscle, is developed and integrated with the spring-wing model, producing a system that generates steady flapping via limit-cycle oscillations despite the absence of periodic control inputs. The model is explored analytically, in simulation, and via implementation on the robotic spring-wing. Novel dynamic characteristics that enable adaptation to damage and passive response to wing collisions are described. Chapter 4 leverages the asynchronous feedback model as part of an interdisciplinary study of the evolution of asynchronous muscle. Phylogenetic analysis, direct measurement of insect muscle dynamics, and experiments on the robophysical system show that evolutionary transitions between periodically-forced and self-excited insect muscle were likely made possible by a "bridge" in the dynamic parameter space that could be traversed under specific conditions. The asynchronous spring-wing model provides new insight into the flight and evolution of some of the most agile insects in nature, and presents a novel adaptive control scheme for future FWMAVs.
ISBN: 9798379897239Subjects--Topical Terms:
649730
Mechanical engineering.
Subjects--Index Terms:
Elasticity
Springs and Wings: A Robotic Study of the Insect Flight System.
LDR
:04437nmm a2200409 4500
001
2403568
005
20241118135832.5
006
m o d
007
cr#unu||||||||
008
251215s2023 ||||||||||||||||| ||eng d
020
$a
9798379897239
035
$a
(MiAaPQ)AAI30523478
035
$a
AAI30523478
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Lynch, James Edmund.
$3
3773839
245
1 0
$a
Springs and Wings: A Robotic Study of the Insect Flight System.
260
1
$a
Ann Arbor :
$b
ProQuest Dissertations & Theses,
$c
2023
300
$a
215 p.
500
$a
Source: Dissertations Abstracts International, Volume: 85-01, Section: B.
500
$a
Advisor: Gravish, Nick.
502
$a
Thesis (Ph.D.)--University of California, San Diego, 2023.
506
$a
.
520
$a
In the last decade, roboticists have had significant success building centimeter-scale flapping wing micro aerial vehicles (FWMAVs) inspired by the flight of insects. Evidence suggests that insects store and release energy in the thoracic exoskeleton to improve energy efficiency by flapping at resonance. Insect-inspired micro flying robots have also leveraged resonance to improve efficiency, but they have discovered that operating at the resonant frequency leads to issues with flight control. This research seeks to investigate the roles that elasticity, aerodynamics, and muscle dynamics play in the emergent dynamics of flapping flight by studying elastic flapping spring-wing systems using dynamically-scaled robophysical models of spring-wings. Studying the dynamics of a robot with comparable features enables the validation of models from biology that are otherwise difficult to test in living insects, the generation of new hypotheses, and the development of novel FWMAV designs.In Chapter 1, the spring-wing system is characterized via a nonlinear spring-mass-damper model. A robophysical model validates that such systems gain energetic benefits from operating at resonance, but reveals that the benefit scales with an underappreciated dimensionless ratio of inertial to aerodynamic forces, the Weis-Fogh number. We show through dimensional analysis that any real system, living or robotic, must balance the mechanical advantage gained from operating at resonance with diminishing returns in efficiency. Chapter 2 further explores the impact of the Weis-Fogh number on flapping dynamics, showing that responsiveness to control inputs is reduced and resistance to environmental perturbations is increased as the dimensionless ratio increases. Together with calculations of Weis-Fogh number in insects, these studies illustrate tradeoffs that drive evolution of resonant flight in nature and guide development of future FWMAVs with elastic energy exchange.In the second half of the thesis, muscle dynamics are introduced in the form of a simplified model of self-excited asynchronous insect muscle. In Chapter 3, a form of velocity feedback, adapted from experiments on insect flight muscle, is developed and integrated with the spring-wing model, producing a system that generates steady flapping via limit-cycle oscillations despite the absence of periodic control inputs. The model is explored analytically, in simulation, and via implementation on the robotic spring-wing. Novel dynamic characteristics that enable adaptation to damage and passive response to wing collisions are described. Chapter 4 leverages the asynchronous feedback model as part of an interdisciplinary study of the evolution of asynchronous muscle. Phylogenetic analysis, direct measurement of insect muscle dynamics, and experiments on the robophysical system show that evolutionary transitions between periodically-forced and self-excited insect muscle were likely made possible by a "bridge" in the dynamic parameter space that could be traversed under specific conditions. The asynchronous spring-wing model provides new insight into the flight and evolution of some of the most agile insects in nature, and presents a novel adaptive control scheme for future FWMAVs.
590
$a
School code: 0033.
650
4
$a
Mechanical engineering.
$3
649730
650
4
$a
Biomechanics.
$3
548685
650
4
$a
Robotics.
$3
519753
653
$a
Elasticity
653
$a
Insect flight system
653
$a
Oscillators
653
$a
Resonance
653
$a
Robophysics
653
$a
Spring-wings
690
$a
0548
690
$a
0648
690
$a
0771
710
2
$a
University of California, San Diego.
$b
Mechanical and Aerospace Engineering.
$3
2096513
773
0
$t
Dissertations Abstracts International
$g
85-01B.
790
$a
0033
791
$a
Ph.D.
792
$a
2023
793
$a
English
856
4 0
$u
https://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=30523478
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9511888
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入