語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Harvesting Solar Energy on a Silicon...
~
D'Mello, Yannick.
FindBook
Google Book
Amazon
博客來
Harvesting Solar Energy on a Silicon Photonic Chip.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Harvesting Solar Energy on a Silicon Photonic Chip./
作者:
D'Mello, Yannick.
出版者:
Ann Arbor : ProQuest Dissertations & Theses, : 2023,
面頁冊數:
213 p.
附註:
Source: Dissertations Abstracts International, Volume: 85-05, Section: B.
Contained By:
Dissertations Abstracts International85-05B.
標題:
Silicon. -
電子資源:
https://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=30718501
ISBN:
9798380706582
Harvesting Solar Energy on a Silicon Photonic Chip.
D'Mello, Yannick.
Harvesting Solar Energy on a Silicon Photonic Chip.
- Ann Arbor : ProQuest Dissertations & Theses, 2023 - 213 p.
Source: Dissertations Abstracts International, Volume: 85-05, Section: B.
Thesis (Ph.D.)--McGill University (Canada), 2023.
An hour of sunlight can satisfy global power consumption for a year, yet solar energy contributes to only 2% of electricity generation. This gap is due to the high price per watt of capture, conversion, and retention. Solar panels capture only direct sunlight, and it depends on weather conditions. The fraction of the solar spectrum that is converted into electricity is limited by the absorption spectrum of silicon (Si). This electricity is retained in batteries whose capacity is further limited by the fermionic nature of electrons. These limitations on the electrical process of harvesting solar energy motivate us to consider an optical process.In this thesis, we show that sunlight can be captured into optical modes, retained via the bosonic nature of photons, and transferred to electron kinetic energy. Hence, rather than transferring energy from sunlight to bound electrons and then storing electrical energy, our scheme captures and stores optical energy and then transfers it to free electrons. It employs complementary metal oxidesemiconductor technology to ensure inexpensive mass-manufacturability and leverages the maturity of the Si photonic (SiP) platform to design wavelength-dependent but scale-invariant optical devices. We present this scheme as a SiP circuit consisting of 6 devices which perform the following functions: (i) capture ambient light into confined modes, (ii) split the modes based on polarization, (iii) rotate one polarization, (iv) match the phases, (v) combine them into a single mode, and (vi) transfer the energy to free electrons.(i) To capture ambient sunlight, we analyze the harvesting mechanisms of naturally occurring, biosilica frustules in diatoms. We find that sub-wavelength structures in the frustule together enhance optical capture, redistribution, and retention in the cell by 9.83%. This shows how the silica cladding of a SiP chip can enhance free-space coupling to on-chip devices. (ii) To split the fundamental transverse electric (TE0) and transverse magnetic (TM0) modes, we demonstrate an on-chip polarization beam splitter. Our design offers a high fabrication tolerance in a compact form factor resulting in an insertion loss of 2 dB and extinction ratio of 11.45 dB over a wavelength range of 1500-1600 nm. (iii) To rotate the TE0 mode towards TM0, we demonstrate an on-chip electromagnetic coil which uses 14 mA of current to generate an alternating magnetic flux density up to 1.16 mT inside a strip waveguide. We calculate a Faraday rotation of 34.65 p-deg at 1550 nm over an interaction length of 1097.4 μm. We also identify ways to increase the rotation by orders of magnitude. (iv) To phase-match both branches, we design a dual polarization phase shifter to induce the Pockels effect in an electro-optic polymer. Simulations show a phase shift of 67.5 mrad/V over an interaction length of 8 mm. (v) The two branches are then combined (demonstrated but not included). (vi) To convert light into electricity, we design an exposed slot waveguide to maximize the overlap between a TM0supermode and co-propagating free electrons. We optimize the coupling efficiency over the interaction length to achieve an electron energy gain of 28.27 keV from an optical pulse energy of 0.22 nJ. Increasing the kinetic energy of the electron is equivalent to increasing the electric current, or generating electricity. Overall, our results reveal the potential of an optical process to harvest solar energy as either a substitute or a complement to the current electrical process.Our novel device designs already offer direct applications to a variety of fields including telecommunications, sensing, and quantum information science. Their separate applications incentivize further development, which is supported by the modularized design of our circuit. In this context, the thesis provides a starting point on the roadmap towards harvesting solar energy on a SiP chip.
ISBN: 9798380706582Subjects--Topical Terms:
669429
Silicon.
Harvesting Solar Energy on a Silicon Photonic Chip.
LDR
:09101nmm a2200433 4500
001
2402051
005
20241028114741.5
006
m o d
007
cr#unu||||||||
008
251215s2023 ||||||||||||||||| ||eng d
020
$a
9798380706582
035
$a
(MiAaPQ)AAI30718501
035
$a
(MiAaPQ)McGill_7m01br813
035
$a
AAI30718501
035
$a
2402051
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
D'Mello, Yannick.
$3
3772269
245
1 0
$a
Harvesting Solar Energy on a Silicon Photonic Chip.
260
1
$a
Ann Arbor :
$b
ProQuest Dissertations & Theses,
$c
2023
300
$a
213 p.
500
$a
Source: Dissertations Abstracts International, Volume: 85-05, Section: B.
500
$a
Advisor: Plant, David V.
502
$a
Thesis (Ph.D.)--McGill University (Canada), 2023.
520
$a
An hour of sunlight can satisfy global power consumption for a year, yet solar energy contributes to only 2% of electricity generation. This gap is due to the high price per watt of capture, conversion, and retention. Solar panels capture only direct sunlight, and it depends on weather conditions. The fraction of the solar spectrum that is converted into electricity is limited by the absorption spectrum of silicon (Si). This electricity is retained in batteries whose capacity is further limited by the fermionic nature of electrons. These limitations on the electrical process of harvesting solar energy motivate us to consider an optical process.In this thesis, we show that sunlight can be captured into optical modes, retained via the bosonic nature of photons, and transferred to electron kinetic energy. Hence, rather than transferring energy from sunlight to bound electrons and then storing electrical energy, our scheme captures and stores optical energy and then transfers it to free electrons. It employs complementary metal oxidesemiconductor technology to ensure inexpensive mass-manufacturability and leverages the maturity of the Si photonic (SiP) platform to design wavelength-dependent but scale-invariant optical devices. We present this scheme as a SiP circuit consisting of 6 devices which perform the following functions: (i) capture ambient light into confined modes, (ii) split the modes based on polarization, (iii) rotate one polarization, (iv) match the phases, (v) combine them into a single mode, and (vi) transfer the energy to free electrons.(i) To capture ambient sunlight, we analyze the harvesting mechanisms of naturally occurring, biosilica frustules in diatoms. We find that sub-wavelength structures in the frustule together enhance optical capture, redistribution, and retention in the cell by 9.83%. This shows how the silica cladding of a SiP chip can enhance free-space coupling to on-chip devices. (ii) To split the fundamental transverse electric (TE0) and transverse magnetic (TM0) modes, we demonstrate an on-chip polarization beam splitter. Our design offers a high fabrication tolerance in a compact form factor resulting in an insertion loss of 2 dB and extinction ratio of 11.45 dB over a wavelength range of 1500-1600 nm. (iii) To rotate the TE0 mode towards TM0, we demonstrate an on-chip electromagnetic coil which uses 14 mA of current to generate an alternating magnetic flux density up to 1.16 mT inside a strip waveguide. We calculate a Faraday rotation of 34.65 p-deg at 1550 nm over an interaction length of 1097.4 μm. We also identify ways to increase the rotation by orders of magnitude. (iv) To phase-match both branches, we design a dual polarization phase shifter to induce the Pockels effect in an electro-optic polymer. Simulations show a phase shift of 67.5 mrad/V over an interaction length of 8 mm. (v) The two branches are then combined (demonstrated but not included). (vi) To convert light into electricity, we design an exposed slot waveguide to maximize the overlap between a TM0supermode and co-propagating free electrons. We optimize the coupling efficiency over the interaction length to achieve an electron energy gain of 28.27 keV from an optical pulse energy of 0.22 nJ. Increasing the kinetic energy of the electron is equivalent to increasing the electric current, or generating electricity. Overall, our results reveal the potential of an optical process to harvest solar energy as either a substitute or a complement to the current electrical process.Our novel device designs already offer direct applications to a variety of fields including telecommunications, sensing, and quantum information science. Their separate applications incentivize further development, which is supported by the modularized design of our circuit. In this context, the thesis provides a starting point on the roadmap towards harvesting solar energy on a SiP chip.
520
$a
Une heure d'ensoleillement peut satisfaire la consommation electrique mondiale pendant un an, mais l'energie solaire ne contribue que 2 % de la production d'electricite. Cet ecart est du au prix eleve du watt de captage, de conversion et de retention. La fraction du spectre solaire qui est convertie en electricite est limitee par le spectre d'absorption du silicium (Si). Cette electricite est retenue dans des batteries dont la capacite est limitee par la nature fermionique des electrons. Ces limitations du processus electrique de recuperation de l'energie solaire nous incitent a envisager un processus optique.Dans cette these, nous montrons que la lumiere solaire peut etre capturee dans des modes optiques, retenue par des photons et transferee a des electrons. Notre schema capture et stocke l'energie optique puis la transfere aux electrons libres. Il utilise une technologie complementaire d'oxyde metallique-semi-conducteur pour assurer une fabrication de masse peu couteuse et tire parti de la maturite de la plate-forme photonique Si (SiP) pour concevoir des dispositifs optiques. Nous presentons ce schema sous la forme d'un circuit SiP compose de 6 dispositifs qui remplissent les fonctions suivantes : (i) capturer la lumiere ambiante en modes confines, (ii) diviser les modes en fonction de la polarisation, (iii) faire pivoter une polarisation, (iv) faire correspondre les phases, (v) les combiner en un seul mode, et (vi) transferer l'energie aux electrons libres.(i) Pour capter la lumiere solaire ambiante, nous analysons les mecanismes de recolte des frustules de biosilice dans les diatomees. Nous constatons que les structures de sous-longueur d'onde dans le frustule ameliorent ensemble la capture optique, la redistribution et la retention dans la cellule de 9,83 %. Cela montre comment le revetement en silice d'une puce SiP peut ameliorer le couplage en espace libre avec les dispositifs sur puce. (ii) Pour diviser les modes electriques transversal fondamental (TE0) et magnetique transversal (TM0), nous demontrons un separateur de polarisation sur puce. Notre conception offre un facteur de forme compact resultant en une perte d'insertion de 2 dB et un rapport d'extinction de 11,45 dB sur des longueurs d'onde de 1500-1600 nm. (iii) Pour faire pivoter le mode TE0 vers TM0, nous demontrons une bobine electromagnetique sur puce qui utilise 14 mA de courant pour generer une densite de flux magnetique alternatif jusqu'a 1,16 mT a l'interieur d'un guide d'ondes a bande. Nous calculons une rotation de Faraday de 34,65 p-deg a 1550 nm sur une longueur d'interaction de 1097,4 μm. Nous identifions egalement des moyens d'augmenter la rotation par ordres de magnitude. (iv) Pour mettre en phase les deux branches, nous concevons un dephaseur a double polarisation. Les simulations montrent un dephasage de 67,5 mrad/V sur une longueur d'interaction de 8 mm. (v) Les deux branches sont ensuite combinees (demontre mais non inclue). (vi) Pour convertir la lumiere en electricite, nous concevons un guide d'ondes a fentes exposees pour maximiser le chevauchement entre un supermode TM0 et des electrons libres co-propagateurs. Nous optimisons l'efficacite de couplage sur la longueur d'interaction pour obtenir un gain d'energie electronique de 28,27 keV a partir d'une energie d'impulsion optique de 0,22 nJ. Augmenter l'energie cinetique de l'electron equivaut a augmenter le courant electrique ou a generer de l'electricite. Dans l'ensemble, nos resultats revelent le potentiel d'un processus optique pour recolter l'energie solaire en tant que substitut ou complement au processus electrique actuel.Nos nouvelles conceptions d'appareils offrent deja des applications directes dans divers domaines. Leurs applications separees incitent a un developpement ulterieur, qui est soutenu par la conception modulaire de notre circuit. Dans ce contexte, la these fournit un point de depart sur la feuille de route vers la recuperation de l'energie solaire sur une puce SiP..
590
$a
School code: 0781.
650
4
$a
Silicon.
$3
669429
650
4
$a
Physiology.
$3
518431
650
4
$a
Plankton.
$3
1299572
650
4
$a
Propagation.
$3
3680519
650
4
$a
Solar energy.
$3
520346
650
4
$a
Electrodes.
$3
629151
650
4
$a
Electric fields.
$3
880423
650
4
$a
Sensors.
$3
3549539
650
4
$a
Design.
$3
518875
650
4
$a
Research & development--R&D.
$3
3554335
650
4
$a
Chlorophyll.
$3
1004345
650
4
$a
Optics.
$3
517925
650
4
$a
Engineering research.
$3
3690201
650
4
$a
Alternative energy.
$3
3436775
650
4
$a
Biological oceanography.
$3
2122748
650
4
$a
Electromagnetics.
$3
3173223
650
4
$a
Energy.
$3
876794
650
4
$a
Engineering.
$3
586835
650
4
$a
Microbiology.
$3
536250
690
$a
0752
690
$a
0389
690
$a
0719
690
$a
0363
690
$a
0416
690
$a
0607
690
$a
0791
690
$a
0537
690
$a
0410
710
2
$a
McGill University (Canada).
$3
1018122
773
0
$t
Dissertations Abstracts International
$g
85-05B.
790
$a
0781
791
$a
Ph.D.
792
$a
2023
793
$a
English
856
4 0
$u
https://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=30718501
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9510371
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入