語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Wavelength Selective Devices In Sili...
~
Taglietti, Bruno.
FindBook
Google Book
Amazon
博客來
Wavelength Selective Devices In Silicon-on-Insulator and Silicon Nitride.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Wavelength Selective Devices In Silicon-on-Insulator and Silicon Nitride./
作者:
Taglietti, Bruno.
出版者:
Ann Arbor : ProQuest Dissertations & Theses, : 2023,
面頁冊數:
174 p.
附註:
Source: Dissertations Abstracts International, Volume: 85-05, Section: B.
Contained By:
Dissertations Abstracts International85-05B.
標題:
Propagation. -
電子資源:
https://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=30718459
ISBN:
9798380706605
Wavelength Selective Devices In Silicon-on-Insulator and Silicon Nitride.
Taglietti, Bruno.
Wavelength Selective Devices In Silicon-on-Insulator and Silicon Nitride.
- Ann Arbor : ProQuest Dissertations & Theses, 2023 - 174 p.
Source: Dissertations Abstracts International, Volume: 85-05, Section: B.
Thesis (Ph.D.)--McGill University (Canada), 2023.
Wavelength-selective photonic devices are important in several fields. Moreover, fabrication variations are often responsible for the decreased experimental performance of photonic devices compared to simulations, and identifying the ones that have the most impact can help us build better photonic devices. Subwavelength Grating (SWG) structures offer versatility and flexibility, such as in controlling dispersion and birefringence. Therefore, this thesis focuses on (1) using SWGs/metamaterials for developing waveguide devices, including Bragg Gratings (BGs) and a Wavelength Division Multiplexing (WDM) diplexer, and (2) characterizing BGs in order to understand more about the fabrication variations imposed in the structures.Silicon Nitride (SiN) is particularly and inherently prone to fabrication variations which can significantly impact the characterized response of devices. We have included in the Transfer-Matrix Method (TMM) simulation model several of these variations, such as waveguide sidewall angle, cross-section dimension variations, and longitudinal shrinkage, and analyzed their likelihood. The variations that best fit the results go against the expectation of material shrinkage of SiN, suggesting possible inaccuracy in the refractive index curve. The inclusion of longitudinal shrinkage as a simulation parameter can help to accurately simulate the bandwidth by modulating the grating strength. The characterized reflection curves show higher bandwidth for the Transverse Magnetic (TM) mode than Transverse Electric (TE),which our modified simulation model could not reproduce. This suggests that the fabrication variations make the geometry of the actual fabricated structures deviate more from the ideal designed structure, resulting in a greater difference between the simulated and measured responses.Another type of structure we have designed is the Sampled SWG-Waveguide Bragg Grating (WBG) in both uniform and random versions. The uniform sampled SWG-WBG shows three reflection bands, and their wavelength spacing shows very good accuracy between simulation and characterization. The device can be used for spectral slicing of broadband sources and for building multi-wavelength lasers. The feasibility of random WBG using SWG is also demonstrated. We have compared the simulated results without any randomizations, including them (evidencing its impact), and between measured responses of several fabricated devices. The correlation between characterized reflection curves of different versions of the device can be as low as 27%, suggesting effective randomization.We have also designed an SWG-based WDM diplexer for the 1310 nm and 1550 nm channels. Our device shows a measured extinction ratio of more than 20 dB for both ports and a good wavelength range of operation. We were able to mitigate fabrication variations by varying design parameters. The device shows a comparable footprint and performance with the state-of-the-art, and the use of SWG waveguides as a building block may offer increased flexibility in future versions.These devices can find several applications in areas such as optical communications and Microwave Photonics (MWP). They also illustrate the versatility and flexibility provided by SWG structures. Innovative approaches using SWG structures can stem from our development, and our fabrication variation analyses can also be used for problem mitigation in future devices.
ISBN: 9798380706605Subjects--Topical Terms:
3680519
Propagation.
Wavelength Selective Devices In Silicon-on-Insulator and Silicon Nitride.
LDR
:08807nmm a2200373 4500
001
2402049
005
20241028114741.5
006
m o d
007
cr#unu||||||||
008
251215s2023 ||||||||||||||||| ||eng d
020
$a
9798380706605
035
$a
(MiAaPQ)AAI30718459
035
$a
(MiAaPQ)McGill_wd3763069
035
$a
AAI30718459
035
$a
2402049
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Taglietti, Bruno.
$3
3772267
245
1 0
$a
Wavelength Selective Devices In Silicon-on-Insulator and Silicon Nitride.
260
1
$a
Ann Arbor :
$b
ProQuest Dissertations & Theses,
$c
2023
300
$a
174 p.
500
$a
Source: Dissertations Abstracts International, Volume: 85-05, Section: B.
500
$a
Advisor: Chen, Lawrence R.
502
$a
Thesis (Ph.D.)--McGill University (Canada), 2023.
520
$a
Wavelength-selective photonic devices are important in several fields. Moreover, fabrication variations are often responsible for the decreased experimental performance of photonic devices compared to simulations, and identifying the ones that have the most impact can help us build better photonic devices. Subwavelength Grating (SWG) structures offer versatility and flexibility, such as in controlling dispersion and birefringence. Therefore, this thesis focuses on (1) using SWGs/metamaterials for developing waveguide devices, including Bragg Gratings (BGs) and a Wavelength Division Multiplexing (WDM) diplexer, and (2) characterizing BGs in order to understand more about the fabrication variations imposed in the structures.Silicon Nitride (SiN) is particularly and inherently prone to fabrication variations which can significantly impact the characterized response of devices. We have included in the Transfer-Matrix Method (TMM) simulation model several of these variations, such as waveguide sidewall angle, cross-section dimension variations, and longitudinal shrinkage, and analyzed their likelihood. The variations that best fit the results go against the expectation of material shrinkage of SiN, suggesting possible inaccuracy in the refractive index curve. The inclusion of longitudinal shrinkage as a simulation parameter can help to accurately simulate the bandwidth by modulating the grating strength. The characterized reflection curves show higher bandwidth for the Transverse Magnetic (TM) mode than Transverse Electric (TE),which our modified simulation model could not reproduce. This suggests that the fabrication variations make the geometry of the actual fabricated structures deviate more from the ideal designed structure, resulting in a greater difference between the simulated and measured responses.Another type of structure we have designed is the Sampled SWG-Waveguide Bragg Grating (WBG) in both uniform and random versions. The uniform sampled SWG-WBG shows three reflection bands, and their wavelength spacing shows very good accuracy between simulation and characterization. The device can be used for spectral slicing of broadband sources and for building multi-wavelength lasers. The feasibility of random WBG using SWG is also demonstrated. We have compared the simulated results without any randomizations, including them (evidencing its impact), and between measured responses of several fabricated devices. The correlation between characterized reflection curves of different versions of the device can be as low as 27%, suggesting effective randomization.We have also designed an SWG-based WDM diplexer for the 1310 nm and 1550 nm channels. Our device shows a measured extinction ratio of more than 20 dB for both ports and a good wavelength range of operation. We were able to mitigate fabrication variations by varying design parameters. The device shows a comparable footprint and performance with the state-of-the-art, and the use of SWG waveguides as a building block may offer increased flexibility in future versions.These devices can find several applications in areas such as optical communications and Microwave Photonics (MWP). They also illustrate the versatility and flexibility provided by SWG structures. Innovative approaches using SWG structures can stem from our development, and our fabrication variation analyses can also be used for problem mitigation in future devices.
520
$a
Les dispositifs photoniques selectifs en longueur d'onde sont importants dans plusieurs do- maines. De plus, les variations de fabrication sont souvent responsables de la diminution des performances experimentales des dispositifs photoniques par rapport aux simulations, et Videntification de celles qui ont le plus d'impact peut nous aider a construire de meilleurs dispositifs photoniques. Les structures de reseaux sub-longueur d'onde (SWG) offrent une polyvalence et flexibilite, notamment pour le controle de la dispersion et de la birefringence. Par consequent, cette these se concentre sur (1) Futilisation de SWGs/metamateriaux pour developper des dispositifs de guides d'ondes, y compris des reseaux de Bragg (BGs) et un diplexeur de multiplexage par repartition en longueur d'onde (WDM), et (2) la car- acterisation des BGs afin de mieux comprendre les variations de fabrication imposees dans les dispositifs de guide d'onde.Le nitrure de silicium (SiN) est particulitrement et intrinsequement sujet a des varia- tions de fabrication qui peuvent avoir un impact significatif sur la reponse caracteriste des dispositifs. Nous avons inclus dans le modele de simulation de la methode Transfer-Matrix (TMM) plusieurs de ces variations, telles que Vangle de la paroi laterale du guide d'ondes. les variations des dimensions de la section transversale et le retrait longitudinal, et nous avons analyse leur probabilite. Les variations qui s'adaptent le mieux aux resultats vont a Fencontre de Vattente du retrait du materiau Silicon Nitride (SiN). suggerant une possible imprecision de la courbe d'indice de refraction. L'inclusion du retrait longitudinal comme parametre de simulation peut aider a simuler avec precision la bande passante en modulant la force du reseau. Les courbes de reflexion caracterisees montrent une largeur de bande plus elevee pour le mode Transverse Magnetic (TM) que Transverse Electric (TE). ce que notre modele de simulation modifie n'a pas pu reproduire. Cela suggere que les variations de fabrication font que la geometrie des structures reellement fabriquees s'ecarte davantage de la structure ideale concue, ce qui entraine une plus grande difference entre les reponses simulees et mesurees.Un autre type de structure que nous avons concu est le SWG-rescau de Bragg a guide «ondes (WBG) echantillonne, en versions uniforme et aleatoire. Le Subwavelength Grating (SWG)-Waveguide Bragg Grating (WBG) echantillonne uniforme presente trois bandes de reflexion. et leur espacement en longueur d'onde montre une tres bonne precision entre la simulation et la caracterisation. Ce dispositif peut etre utilise pour le decoupage spectral de souroes a large bande et pour la construction de lasers a longueurs d'onde multiples. La faisabilite d'un WBG aleatoire utilisant un SWG est egalement demontree. Nous avons compare les resultats simules sans aucune randomisation, en les incluant (mettant en evidence son impact), et entre les reponses mesurees de plusieurs dispositifs fabriques. La correlation entre les courbes de reflexion caracterisees de differentes versions du dispositif peut etre aussi faible que 27%, ce qui suggere une randomisation efficace.Naus avons egalement concu un diplexeur SWG base sur un Wavelength Division Multi- plexing (WDM) pour les canaux 1310 nm et 1550 nm. Notre dispositif presente un rapport d'extinction mesure de plus de 20 dB pour les deux ports et une bonne gamme de longueurs d'onde de fonctionnement. Nous avons pu attenuer les variations de fabrication en faisant varier les parametres de conception. Le dispasitif presente un encombrement et des perfor- mances comparables a ceux de V'etat de I'art, et I'utilisation de guides d'ondes SWG comme bloe de construction pourrait offrir une flexibilite accrue dans les versions futures.Ces dispositifs peuvent trouver plusieurs applications dans des domaines tels que les communications optiques et la Photonique par micro-ondes (MWP). Ils illustrent egalement la polyvalence et la flexibilite offertes par les structures SWG. Des approches innovantes utilisant des structures SWG peuvent decouler de notre developpement, et nos analyses des variations de fabrication peuvent egalement etre utilisees pour attenuer les problemes dans les dispositifs futurs.
590
$a
School code: 0781.
650
4
$a
Propagation.
$3
3680519
650
4
$a
Silicon nitride.
$3
656984
650
4
$a
Photonics.
$3
526247
650
4
$a
Spectrum allocation.
$3
3562481
650
4
$a
Writing.
$3
551664
650
4
$a
Bandwidths.
$3
3560998
650
4
$a
Editing.
$3
601456
650
4
$a
Electrical engineering.
$3
649834
650
4
$a
Electromagnetics.
$3
3173223
650
4
$a
Engineering.
$3
586835
650
4
$a
Optics.
$3
517925
690
$a
0544
690
$a
0607
690
$a
0537
690
$a
0752
710
2
$a
McGill University (Canada).
$3
1018122
773
0
$t
Dissertations Abstracts International
$g
85-05B.
790
$a
0781
791
$a
Ph.D.
792
$a
2023
793
$a
English
856
4 0
$u
https://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=30718459
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9510369
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入