語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Toward Accurate Simulation of Edge-B...
~
Daley, Joshua.
FindBook
Google Book
Amazon
博客來
Toward Accurate Simulation of Edge-Based Distributed Deep Neural Network Training.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Toward Accurate Simulation of Edge-Based Distributed Deep Neural Network Training./
作者:
Daley, Joshua.
出版者:
Ann Arbor : ProQuest Dissertations & Theses, : 2024,
面頁冊數:
37 p.
附註:
Source: Masters Abstracts International, Volume: 85-12.
Contained By:
Masters Abstracts International85-12.
標題:
Computer science. -
電子資源:
https://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=31296232
ISBN:
9798383098349
Toward Accurate Simulation of Edge-Based Distributed Deep Neural Network Training.
Daley, Joshua.
Toward Accurate Simulation of Edge-Based Distributed Deep Neural Network Training.
- Ann Arbor : ProQuest Dissertations & Theses, 2024 - 37 p.
Source: Masters Abstracts International, Volume: 85-12.
Thesis (M.S.)--State University of New York at Binghamton, 2024.
In distributed machine learning systems, topology and configuration form a broad domain. Especially in an edge scenario with many network-connected devices to coordinate for training, real systems are expensive and time-consuming to set up. We present ETSim, a simulator for distributed deep learning at the edge that allows us to quickly examine the effects of different system topologies and configurations on training. In an evaluation experiment, ETSim's results were at least 92% accurate to those of the real system. We use ETSim to conduct case studies and present various findings regarding topology and configuration in a parameter server architecture.
ISBN: 9798383098349Subjects--Topical Terms:
523869
Computer science.
Subjects--Index Terms:
Edge
Toward Accurate Simulation of Edge-Based Distributed Deep Neural Network Training.
LDR
:01821nmm a2200397 4500
001
2401945
005
20241022111612.5
006
m o d
007
cr#unu||||||||
008
251215s2024 ||||||||||||||||| ||eng d
020
$a
9798383098349
035
$a
(MiAaPQ)AAI31296232
035
$a
AAI31296232
035
$a
2401945
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Daley, Joshua.
$3
3772162
245
1 0
$a
Toward Accurate Simulation of Edge-Based Distributed Deep Neural Network Training.
260
1
$a
Ann Arbor :
$b
ProQuest Dissertations & Theses,
$c
2024
300
$a
37 p.
500
$a
Source: Masters Abstracts International, Volume: 85-12.
500
$a
Advisor: Lander, Leslie;Zhang, Yifan.
502
$a
Thesis (M.S.)--State University of New York at Binghamton, 2024.
520
$a
In distributed machine learning systems, topology and configuration form a broad domain. Especially in an edge scenario with many network-connected devices to coordinate for training, real systems are expensive and time-consuming to set up. We present ETSim, a simulator for distributed deep learning at the edge that allows us to quickly examine the effects of different system topologies and configurations on training. In an evaluation experiment, ETSim's results were at least 92% accurate to those of the real system. We use ETSim to conduct case studies and present various findings regarding topology and configuration in a parameter server architecture.
590
$a
School code: 0792.
650
4
$a
Computer science.
$3
523869
650
4
$a
Systems science.
$3
3168411
653
$a
Edge
653
$a
Topology
653
$a
Training
653
$a
Machine learning
653
$a
Server architecture
690
$a
0984
690
$a
0790
690
$a
0800
710
2
$a
State University of New York at Binghamton.
$b
Computer Science.
$3
1058053
773
0
$t
Masters Abstracts International
$g
85-12.
790
$a
0792
791
$a
M.S.
792
$a
2024
793
$a
English
856
4 0
$u
https://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=31296232
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9510265
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入