語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Applications of Computational Intell...
~
Nambisan, Anand Krishnadas.
FindBook
Google Book
Amazon
博客來
Applications of Computational Intelligence and Data Fusion Techniques for Biomedical Images.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Applications of Computational Intelligence and Data Fusion Techniques for Biomedical Images./
作者:
Nambisan, Anand Krishnadas.
出版者:
Ann Arbor : ProQuest Dissertations & Theses, : 2024,
面頁冊數:
111 p.
附註:
Source: Dissertations Abstracts International, Volume: 85-12, Section: B.
Contained By:
Dissertations Abstracts International85-12B.
標題:
Dermatology. -
電子資源:
https://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=31236088
ISBN:
9798383098950
Applications of Computational Intelligence and Data Fusion Techniques for Biomedical Images.
Nambisan, Anand Krishnadas.
Applications of Computational Intelligence and Data Fusion Techniques for Biomedical Images.
- Ann Arbor : ProQuest Dissertations & Theses, 2024 - 111 p.
Source: Dissertations Abstracts International, Volume: 85-12, Section: B.
Thesis (Ph.D.)--Missouri University of Science and Technology, 2024.
The realm of melanoma diagnosis has been significantly advanced by deep learning (DL) techniques, yet the current approaches are not without limitations, including missed diagnoses and the challenge of interpreting these "black box" models. The research is comprised of three studies, each contributing uniquely towards advancing melanoma detection accuracy and interpretability. The first study focuses on improving the detection of specific dermoscopic structures through a deep learning-based segmentation approach, while the second study builds upon this by employing a fusion technique that combines traditional image features with advanced deep learning models. This method significantly improves melanoma detection, particularly in recall and accuracy. The third study expands the scope by exploring the fusion of deep learning with conventional imaging processing methods, emphasizing the enhancement of diagnostic specificity, and addressing the critical aspect of explainability in AI diagnostics.
ISBN: 9798383098950Subjects--Topical Terms:
829009
Dermatology.
Subjects--Index Terms:
Deep learning
Applications of Computational Intelligence and Data Fusion Techniques for Biomedical Images.
LDR
:02230nmm a2200409 4500
001
2401926
005
20241022111608.5
006
m o d
007
cr#unu||||||||
008
251215s2024 ||||||||||||||||| ||eng d
020
$a
9798383098950
035
$a
(MiAaPQ)AAI31236088
035
$a
AAI31236088
035
$a
2401926
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Nambisan, Anand Krishnadas.
$3
3772145
245
1 0
$a
Applications of Computational Intelligence and Data Fusion Techniques for Biomedical Images.
260
1
$a
Ann Arbor :
$b
ProQuest Dissertations & Theses,
$c
2024
300
$a
111 p.
500
$a
Source: Dissertations Abstracts International, Volume: 85-12, Section: B.
500
$a
Advisor: Stanley, Ronald Joe.
502
$a
Thesis (Ph.D.)--Missouri University of Science and Technology, 2024.
520
$a
The realm of melanoma diagnosis has been significantly advanced by deep learning (DL) techniques, yet the current approaches are not without limitations, including missed diagnoses and the challenge of interpreting these "black box" models. The research is comprised of three studies, each contributing uniquely towards advancing melanoma detection accuracy and interpretability. The first study focuses on improving the detection of specific dermoscopic structures through a deep learning-based segmentation approach, while the second study builds upon this by employing a fusion technique that combines traditional image features with advanced deep learning models. This method significantly improves melanoma detection, particularly in recall and accuracy. The third study expands the scope by exploring the fusion of deep learning with conventional imaging processing methods, emphasizing the enhancement of diagnostic specificity, and addressing the critical aspect of explainability in AI diagnostics.
590
$a
School code: 0587.
650
4
$a
Dermatology.
$3
829009
650
4
$a
Biomedical engineering.
$3
535387
650
4
$a
Bioinformatics.
$3
553671
653
$a
Deep learning
653
$a
Data fusion
653
$a
Machine learning
653
$a
Black box
653
$a
AI diagnostics
690
$a
0800
690
$a
0541
690
$a
0757
690
$a
0715
710
2
$a
Missouri University of Science and Technology.
$b
Electrical Engineering.
$3
2093519
773
0
$t
Dissertations Abstracts International
$g
85-12B.
790
$a
0587
791
$a
Ph.D.
792
$a
2024
793
$a
English
856
4 0
$u
https://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=31236088
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9510246
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入