語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Efficient Learning from 3D Molecular...
~
Suriana, Patricia.
FindBook
Google Book
Amazon
博客來
Efficient Learning from 3D Molecular Structures Using Equivariant Neural Networks.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Efficient Learning from 3D Molecular Structures Using Equivariant Neural Networks./
作者:
Suriana, Patricia.
出版者:
Ann Arbor : ProQuest Dissertations & Theses, : 2024,
面頁冊數:
155 p.
附註:
Source: Dissertations Abstracts International, Volume: 85-12, Section: B.
Contained By:
Dissertations Abstracts International85-12B.
標題:
Biology. -
電子資源:
https://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=31102260
ISBN:
9798383013298
Efficient Learning from 3D Molecular Structures Using Equivariant Neural Networks.
Suriana, Patricia.
Efficient Learning from 3D Molecular Structures Using Equivariant Neural Networks.
- Ann Arbor : ProQuest Dissertations & Theses, 2024 - 155 p.
Source: Dissertations Abstracts International, Volume: 85-12, Section: B.
Thesis (Ph.D.)--Stanford University, 2024.
Deep learning methods operating on three-dimensional (3D) molecular structures show promise in addressing vital challenges in biology and chemistry. The scarcity of experimentally determined structures, however, poses a significant hurdle in many machine learning applications. The incorporation of equivariance into deep learning models, leveraging inherent symmetries in structural biology problems, is essential for efficient learning from limited data. This dissertation delves into the utilization of rotationally and translationally equivariant neural networks in various structural biology problems. These include protein model quality assessment, the development of a machine learning--based scoring function for protein-ligand docking that considers protein flexibility, and the implementation of pocket-aware 3D fragment-based ligand optimization.
ISBN: 9798383013298Subjects--Topical Terms:
522710
Biology.
Efficient Learning from 3D Molecular Structures Using Equivariant Neural Networks.
LDR
:01931nmm a2200337 4500
001
2401897
005
20241022111600.5
006
m o d
007
cr#unu||||||||
008
251215s2024 ||||||||||||||||| ||eng d
020
$a
9798383013298
035
$a
(MiAaPQ)AAI31102260
035
$a
(MiAaPQ)STANFORDdc577zq7333
035
$a
AAI31102260
035
$a
2401897
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Suriana, Patricia.
$3
3772117
245
1 0
$a
Efficient Learning from 3D Molecular Structures Using Equivariant Neural Networks.
260
1
$a
Ann Arbor :
$b
ProQuest Dissertations & Theses,
$c
2024
300
$a
155 p.
500
$a
Source: Dissertations Abstracts International, Volume: 85-12, Section: B.
500
$a
Advisor: Feng, Liang;Kundaje, Anshul;Maduke, Merritt;Dror, Ron.
502
$a
Thesis (Ph.D.)--Stanford University, 2024.
520
$a
Deep learning methods operating on three-dimensional (3D) molecular structures show promise in addressing vital challenges in biology and chemistry. The scarcity of experimentally determined structures, however, poses a significant hurdle in many machine learning applications. The incorporation of equivariance into deep learning models, leveraging inherent symmetries in structural biology problems, is essential for efficient learning from limited data. This dissertation delves into the utilization of rotationally and translationally equivariant neural networks in various structural biology problems. These include protein model quality assessment, the development of a machine learning--based scoring function for protein-ligand docking that considers protein flexibility, and the implementation of pocket-aware 3D fragment-based ligand optimization.
590
$a
School code: 0212.
650
4
$a
Biology.
$3
522710
650
4
$a
Deep learning.
$3
3554982
650
4
$a
Neural networks.
$3
677449
650
4
$a
Symmetry.
$3
536815
690
$a
0306
690
$a
0800
710
2
$a
Stanford University.
$3
754827
773
0
$t
Dissertations Abstracts International
$g
85-12B.
790
$a
0212
791
$a
Ph.D.
792
$a
2024
793
$a
English
856
4 0
$u
https://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=31102260
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9510217
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入