Language:
English
繁體中文
Help
回圖書館首頁
手機版館藏查詢
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
Improvements to Remote Sensing Algor...
~
Pachniak, Elliot.
Linked to FindBook
Google Book
Amazon
博客來
Improvements to Remote Sensing Algorithms Using Machine Learning Neural Networks.
Record Type:
Electronic resources : Monograph/item
Title/Author:
Improvements to Remote Sensing Algorithms Using Machine Learning Neural Networks./
Author:
Pachniak, Elliot.
Published:
Ann Arbor : ProQuest Dissertations & Theses, : 2024,
Description:
123 p.
Notes:
Source: Dissertations Abstracts International, Volume: 86-01, Section: B.
Contained By:
Dissertations Abstracts International86-01B.
Subject:
Remote sensing. -
Online resource:
https://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=31146353
ISBN:
9798383181737
Improvements to Remote Sensing Algorithms Using Machine Learning Neural Networks.
Pachniak, Elliot.
Improvements to Remote Sensing Algorithms Using Machine Learning Neural Networks.
- Ann Arbor : ProQuest Dissertations & Theses, 2024 - 123 p.
Source: Dissertations Abstracts International, Volume: 86-01, Section: B.
Thesis (Ph.D.)--Stevens Institute of Technology, 2024.
Modern satellite remote sensing plays a crucial role in providing data on various water, atmosphere, and land surface conditions. This research introduces improvements to remote sensing methods through a new method for quantifying measurement uncertainties in atmospheric correction algorithms of an existing tool for retrieval of aerosol and marine parameters from ocean color data (OC-SMART); an exploration of the impact of hyperspectral versus multispectral data channels on snow parameter retrieval algorithms; and applications of OC-SMART to Arctic water inherent optical property retrievals. Chapter 1 contains a background on remote sensing of environments; chapter 2 discusses critical tools used in this research; chapter 3 describes how to quantify uncertainties in OC-SMART using Bayesian inversion; chapter 4 explores the impact of hyperspectral information on retrievals of snow grain size and impurity concentration; chapter 5 discusses the application of OC-SMART to Arctic water inherent optical property retrievals; and chapter 6 summarizes the research and provides closing remarks.
ISBN: 9798383181737Subjects--Topical Terms:
535394
Remote sensing.
Subjects--Index Terms:
Modern satellite
Improvements to Remote Sensing Algorithms Using Machine Learning Neural Networks.
LDR
:02299nmm a2200397 4500
001
2400117
005
20240924101908.5
006
m o d
007
cr#unu||||||||
008
251215s2024 ||||||||||||||||| ||eng d
020
$a
9798383181737
035
$a
(MiAaPQ)AAI31146353
035
$a
AAI31146353
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Pachniak, Elliot.
$3
3770085
245
1 0
$a
Improvements to Remote Sensing Algorithms Using Machine Learning Neural Networks.
260
1
$a
Ann Arbor :
$b
ProQuest Dissertations & Theses,
$c
2024
300
$a
123 p.
500
$a
Source: Dissertations Abstracts International, Volume: 86-01, Section: B.
500
$a
Advisor: Stamnes, Knut.
502
$a
Thesis (Ph.D.)--Stevens Institute of Technology, 2024.
520
$a
Modern satellite remote sensing plays a crucial role in providing data on various water, atmosphere, and land surface conditions. This research introduces improvements to remote sensing methods through a new method for quantifying measurement uncertainties in atmospheric correction algorithms of an existing tool for retrieval of aerosol and marine parameters from ocean color data (OC-SMART); an exploration of the impact of hyperspectral versus multispectral data channels on snow parameter retrieval algorithms; and applications of OC-SMART to Arctic water inherent optical property retrievals. Chapter 1 contains a background on remote sensing of environments; chapter 2 discusses critical tools used in this research; chapter 3 describes how to quantify uncertainties in OC-SMART using Bayesian inversion; chapter 4 explores the impact of hyperspectral information on retrievals of snow grain size and impurity concentration; chapter 5 discusses the application of OC-SMART to Arctic water inherent optical property retrievals; and chapter 6 summarizes the research and provides closing remarks.
590
$a
School code: 0733.
650
4
$a
Remote sensing.
$3
535394
650
4
$a
Computer engineering.
$3
621879
650
4
$a
Computer science.
$3
523869
653
$a
Modern satellite
653
$a
Bayesian inversion
653
$a
Ocean color data
653
$a
Marine parameters
653
$a
Machine learning
653
$a
Neural networks
690
$a
0799
690
$a
0984
690
$a
0464
710
2
$a
Stevens Institute of Technology.
$b
Physics / Polymer Engineering.
$3
3276949
773
0
$t
Dissertations Abstracts International
$g
86-01B.
790
$a
0733
791
$a
Ph.D.
792
$a
2024
793
$a
English
856
4 0
$u
https://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=31146353
based on 0 review(s)
Location:
ALL
電子資源
Year:
Volume Number:
Items
1 records • Pages 1 •
1
Inventory Number
Location Name
Item Class
Material type
Call number
Usage Class
Loan Status
No. of reservations
Opac note
Attachments
W9508437
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
On shelf
0
1 records • Pages 1 •
1
Multimedia
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login