Language:
English
繁體中文
Help
回圖書館首頁
手機版館藏查詢
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
Improving the Performance of Yolo-Ba...
~
Sahin, Oyku.
Linked to FindBook
Google Book
Amazon
博客來
Improving the Performance of Yolo-Based Detection Algorithms for Small Object Detection in Uav-Taken Images = = Kucuk Nesne Tanima uZerine Kullanilan Yolo Tabanli Nesne Tanima Algoritmalarinin Iyilestirilmesi.
Record Type:
Electronic resources : Monograph/item
Title/Author:
Improving the Performance of Yolo-Based Detection Algorithms for Small Object Detection in Uav-Taken Images =/
Reminder of title:
Kucuk Nesne Tanima uZerine Kullanilan Yolo Tabanli Nesne Tanima Algoritmalarinin Iyilestirilmesi.
Author:
Sahin, Oyku.
Published:
Ann Arbor : ProQuest Dissertations & Theses, : 2023,
Description:
121 p.
Notes:
Source: Masters Abstracts International, Volume: 84-10.
Contained By:
Masters Abstracts International84-10.
Subject:
Cameras. -
Online resource:
https://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=30394584
ISBN:
9798377692768
Improving the Performance of Yolo-Based Detection Algorithms for Small Object Detection in Uav-Taken Images = = Kucuk Nesne Tanima uZerine Kullanilan Yolo Tabanli Nesne Tanima Algoritmalarinin Iyilestirilmesi.
Sahin, Oyku.
Improving the Performance of Yolo-Based Detection Algorithms for Small Object Detection in Uav-Taken Images =
Kucuk Nesne Tanima uZerine Kullanilan Yolo Tabanli Nesne Tanima Algoritmalarinin Iyilestirilmesi. - Ann Arbor : ProQuest Dissertations & Theses, 2023 - 121 p.
Source: Masters Abstracts International, Volume: 84-10.
Thesis (M.S.)--Bilkent Universitesi (Turkey), 2023.
Recent advances in computer vision yield emerging novel applications for cameraequipped unmanned aerial vehicles such as object detection. The accuracy of the existing object detection solutions running on images acquired by Unmanned Aerial Vehicles (UAVs) is limited when compared to the performance of the object detection solutions designed for ground-taken images. Existing object detection solutions demonstrate lower performance on aerial datasets because of the reasons originating from the nature of the UAVs. These reasons can be summarized as: (i) the lack of large drone datasets with different types of objects, (ii) the larger variance in both scale and orientation of objects in drone images, and (iii) the difference in shape and texture of the features between the ground and the aerial images. Due to these reasons, YOLO-based models, a popular family of one-stage object detectors, perform insufficiently in UAV-based applications. In this thesis, two improved YOLO models: YOLODrone and YOLODrone+ are introduced for detecting objects in drone images. The performance of the models are tested on VisDrone2019 and SkyDataV1 datasets and improved results are reported when compared to the original YOLOv3 and YOLOv5 models.
ISBN: 9798377692768Subjects--Topical Terms:
524039
Cameras.
Improving the Performance of Yolo-Based Detection Algorithms for Small Object Detection in Uav-Taken Images = = Kucuk Nesne Tanima uZerine Kullanilan Yolo Tabanli Nesne Tanima Algoritmalarinin Iyilestirilmesi.
LDR
:03711nmm a2200397 4500
001
2399896
005
20240916070013.5
006
m o d
007
cr#unu||||||||
008
251215s2023 ||||||||||||||||| ||eng d
020
$a
9798377692768
035
$a
(MiAaPQ)AAI30394584
035
$a
(MiAaPQ)Bilkent_11693111198
035
$a
AAI30394584
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Sahin, Oyku.
$3
3769873
245
1 0
$a
Improving the Performance of Yolo-Based Detection Algorithms for Small Object Detection in Uav-Taken Images =
$b
Kucuk Nesne Tanima uZerine Kullanilan Yolo Tabanli Nesne Tanima Algoritmalarinin Iyilestirilmesi.
260
1
$a
Ann Arbor :
$b
ProQuest Dissertations & Theses,
$c
2023
300
$a
121 p.
500
$a
Source: Masters Abstracts International, Volume: 84-10.
500
$a
Advisor: Korpeoglu, Ibrahim.
502
$a
Thesis (M.S.)--Bilkent Universitesi (Turkey), 2023.
520
$a
Recent advances in computer vision yield emerging novel applications for cameraequipped unmanned aerial vehicles such as object detection. The accuracy of the existing object detection solutions running on images acquired by Unmanned Aerial Vehicles (UAVs) is limited when compared to the performance of the object detection solutions designed for ground-taken images. Existing object detection solutions demonstrate lower performance on aerial datasets because of the reasons originating from the nature of the UAVs. These reasons can be summarized as: (i) the lack of large drone datasets with different types of objects, (ii) the larger variance in both scale and orientation of objects in drone images, and (iii) the difference in shape and texture of the features between the ground and the aerial images. Due to these reasons, YOLO-based models, a popular family of one-stage object detectors, perform insufficiently in UAV-based applications. In this thesis, two improved YOLO models: YOLODrone and YOLODrone+ are introduced for detecting objects in drone images. The performance of the models are tested on VisDrone2019 and SkyDataV1 datasets and improved results are reported when compared to the original YOLOv3 and YOLOv5 models.
520
$a
Bilgisayarli gorunun onemli alanlarindan biri olan nesne tanima alanindaki son gelismeler, kamera donanimli Insansiz Hava Araclari (IHA) icin ortaya cikan yeni cozumler saglar. Insansiz Hava Araclari'ndan alinan goruntuler uzerinde calisan, nesne tanima cozumlerinin basarimi, yerden alinan goruntuler icin nesne tanima cozumlerinin performansi ile karsilastirildiginda daha siniridir. Mev- cut nesne tanima cozumleri, IHA'larin dogasindan kaynaklanan nedenlerle IHA veri kumelerinde daha dusuk performans gostermektedir. Bu nedenler: (i) farkli nesne boyutlarina sahip buyuk drone veri setlerinin olmamasi, (ii) drone goruntulerinin heni olcek hem de yonelim olarak daha buyuk varyanslara sahip olmasi (iii) yer ve hava arasindaki sekil ve doku ozelliklerindeki farklilik. Bu sebeplerden dolayi, tek kademeli nesne tanima yontemlerinin bir parcasi olan YOLO tabanli modeller, IHA tabanli uygulamalarda daha dusuk performans gostermektedir. Bu tezde, YOLO algoritmasi uzerine YOLODrone ve YOLO- Drone, IHA goruntulerindeki nesneleri tanimak icin gelistirilmistir. Modellerin performansi VisDrone2019 ve SkyDataV1 veri ktimelerinde test edilip; YOLOv3 ve YOLOv5 ile karsilastirildiginda sonuclarda iyilestirme gozlemlenmistir.
590
$a
School code: 1159.
650
4
$a
Cameras.
$3
524039
650
4
$a
Deep learning.
$3
3554982
650
4
$a
Sensors.
$3
3549539
650
4
$a
Design.
$3
518875
650
4
$a
Unmanned aerial vehicles.
$3
3560267
650
4
$a
Boxes.
$3
3564918
650
4
$a
Drones.
$3
3549538
650
4
$a
Algorithms.
$3
536374
650
4
$a
Aerospace engineering.
$3
1002622
650
4
$a
Engineering.
$3
586835
650
4
$a
Robotics.
$3
519753
650
4
$a
Transportation.
$3
555912
690
$a
0389
690
$a
0729
690
$a
0538
690
$a
0800
690
$a
0537
690
$a
0771
690
$a
0709
710
2
$a
Bilkent Universitesi (Turkey).
$3
1919057
773
0
$t
Masters Abstracts International
$g
84-10.
790
$a
1159
791
$a
M.S.
792
$a
2023
793
$a
English
856
4 0
$u
https://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=30394584
based on 0 review(s)
Location:
ALL
電子資源
Year:
Volume Number:
Items
1 records • Pages 1 •
1
Inventory Number
Location Name
Item Class
Material type
Call number
Usage Class
Loan Status
No. of reservations
Opac note
Attachments
W9508216
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
On shelf
0
1 records • Pages 1 •
1
Multimedia
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login