Language:
English
繁體中文
Help
回圖書館首頁
手機版館藏查詢
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
Micro-Engineering the Biomechanical ...
~
Aslani, Saba.
Linked to FindBook
Google Book
Amazon
博客來
Micro-Engineering the Biomechanical Niche for Brain Organoids.
Record Type:
Electronic resources : Monograph/item
Title/Author:
Micro-Engineering the Biomechanical Niche for Brain Organoids./
Author:
Aslani, Saba.
Published:
Ann Arbor : ProQuest Dissertations & Theses, : 2020,
Description:
69 p.
Notes:
Source: Masters Abstracts International, Volume: 82-10.
Contained By:
Masters Abstracts International82-10.
Subject:
Membranes. -
Online resource:
https://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=28383696
ISBN:
9798708718808
Micro-Engineering the Biomechanical Niche for Brain Organoids.
Aslani, Saba.
Micro-Engineering the Biomechanical Niche for Brain Organoids.
- Ann Arbor : ProQuest Dissertations & Theses, 2020 - 69 p.
Source: Masters Abstracts International, Volume: 82-10.
Thesis (M.Sc.)--McGill University (Canada), 2020.
Brain organoids represent a robust model system that offers various potential applications in drug screening and disease modeling. Experimental control over brain organoid cultures is in part limited by variability of the physical properties of the culture environment. Matrigel, a soluble basement membrane-rich extract is currently the gold standard material for organoid development. It supports organoid formation by providing both the structural scaffold and the source of signals influencing various biological functions, namely tissue polarity and cell migration. However, Matrigel suffers from considerable variability and poor mechanical properties prompting the search for more reproducible ECM-mimetics for brain organoid culture. To enhance the gel mechanics while keeping the source of adhesive signaling cues, we chose to add a mechanically tunable polymer Alginate to Matrigel. In this project, we demonstrated that adding Alginate to Matrigel enhances the microstructure and viscoelasticity of the resulting hybrid hydrogels. Our results suggest that Matrigel's high variability in composition is also depicted in its viscoelastic behavior. We have also shown that Alginate can have similar viscoelastic behavior to Matrigel with concentrations of 1% to 2% Alginate (w/v). Furthermore, our findings interestingly show that Matrigel 50%/Alginate 1% hybrid hydrogels are more viscoelastic than Matrigel 50% and Alginate 1% alone. This work highlights the potentials of Alginate as a simple-to-use and inexpensive polymer with the final goal of having more consistent brain organoid cultures.
ISBN: 9798708718808Subjects--Topical Terms:
1531702
Membranes.
Subjects--Index Terms:
Micro-engineering
Micro-Engineering the Biomechanical Niche for Brain Organoids.
LDR
:04541nmm a2200361 4500
001
2399683
005
20240916065942.5
006
m o d
007
cr#unu||||||||
008
251215s2020 ||||||||||||||||| ||eng d
020
$a
9798708718808
035
$a
(MiAaPQ)AAI28383696
035
$a
(MiAaPQ)McGill_tt44ps379
035
$a
AAI28383696
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Aslani, Saba.
$3
3769657
245
1 0
$a
Micro-Engineering the Biomechanical Niche for Brain Organoids.
260
1
$a
Ann Arbor :
$b
ProQuest Dissertations & Theses,
$c
2020
300
$a
69 p.
500
$a
Source: Masters Abstracts International, Volume: 82-10.
500
$a
Advisor: Durcan, Thomas.
502
$a
Thesis (M.Sc.)--McGill University (Canada), 2020.
520
$a
Brain organoids represent a robust model system that offers various potential applications in drug screening and disease modeling. Experimental control over brain organoid cultures is in part limited by variability of the physical properties of the culture environment. Matrigel, a soluble basement membrane-rich extract is currently the gold standard material for organoid development. It supports organoid formation by providing both the structural scaffold and the source of signals influencing various biological functions, namely tissue polarity and cell migration. However, Matrigel suffers from considerable variability and poor mechanical properties prompting the search for more reproducible ECM-mimetics for brain organoid culture. To enhance the gel mechanics while keeping the source of adhesive signaling cues, we chose to add a mechanically tunable polymer Alginate to Matrigel. In this project, we demonstrated that adding Alginate to Matrigel enhances the microstructure and viscoelasticity of the resulting hybrid hydrogels. Our results suggest that Matrigel's high variability in composition is also depicted in its viscoelastic behavior. We have also shown that Alginate can have similar viscoelastic behavior to Matrigel with concentrations of 1% to 2% Alginate (w/v). Furthermore, our findings interestingly show that Matrigel 50%/Alginate 1% hybrid hydrogels are more viscoelastic than Matrigel 50% and Alginate 1% alone. This work highlights the potentials of Alginate as a simple-to-use and inexpensive polymer with the final goal of having more consistent brain organoid cultures.
520
$a
Les organoides cerebraux constituent un modele de recherche robuste aux applications diverses telles que la modelisation de maladies et le criblage de medicaments potentiels. Le controle de l'experimentateur sur les cultures d'organoides cerebraux est en partie limite par la variabilite des proprietes physiques de l'environnement de culture. Le Matrigel - un extrait soluble, riche en membrane basale- constitue le milieu de reference utilise pour la culture d'organoides. Il fournit a la fois un echafaudage et une source de signaux influencant des fonctions biologiques telles que la polarite tissulaire et la migration cellulaire. Cependant, le Matrigel presente une grande variabilite et des proprietes mecaniques inadequates, incitant a trouver de nouveaux milieux qui miment la matrice extra-cellulaire (MEC) de maniere plus reproductible. Afin d'ameliorer les proprietes mecaniques tout en conservant la source de signaux d'adhesion cellulaire, nous avons choisi d'ajouter un polymere aux proprietes mecaniques ajustables - l'Alginate - au Matrigel. Ici, nous demontrons que l'ajout d'Alginate au Matrigel ameliore la microstructure et la viscoelasticite des hydrogels hybrides resultants. Nos resultats suggerent que la forte variabilite de Matrigel dans la composition est egalement representee dans son comportement viscoelastique. Nous avons egalement montre que l'Alginate peut avoir un comportement viscoelastique similaire au Matrigel avec des concentrations de 1% a 2% d'alginate (m / v). En outre, nos resultats montrent de maniere interessante que les hydrogels hybrides Matrigel 50% / Alginate 1% sont plus viscoelastiques que Matrigel 50% et Alginate 1% seuls. Ce travail met en evidence le potentiel de l'Alginate en tant que polymere simple d'utilisation et bon marche dans le but final d'obtenir des cultures organoides cerebrales plus coherent.
590
$a
School code: 0781.
650
4
$a
Membranes.
$3
1531702
650
4
$a
Polymers.
$3
535398
650
4
$a
Viscoelasticity.
$3
718183
650
4
$a
Brain research.
$3
3561789
650
4
$a
Biomechanics.
$3
548685
650
4
$a
Hydrogels.
$3
1305894
650
4
$a
Scanning electron microscopy.
$3
551366
653
$a
Micro-engineering
653
$a
Biomechanical niche
653
$a
Brain organoids
690
$a
0317
710
2
$a
McGill University (Canada).
$3
1018122
773
0
$t
Masters Abstracts International
$g
82-10.
790
$a
0781
791
$a
M.Sc.
792
$a
2020
793
$a
English
856
4 0
$u
https://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=28383696
based on 0 review(s)
Location:
ALL
電子資源
Year:
Volume Number:
Items
1 records • Pages 1 •
1
Inventory Number
Location Name
Item Class
Material type
Call number
Usage Class
Loan Status
No. of reservations
Opac note
Attachments
W9508003
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
On shelf
0
1 records • Pages 1 •
1
Multimedia
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login