語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Investigation of structural properti...
~
Rahimi, Ronak.
FindBook
Google Book
Amazon
博客來
Investigation of structural properties of organic thin films for solar cell and transistor applications.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Investigation of structural properties of organic thin films for solar cell and transistor applications./
作者:
Rahimi, Ronak.
出版者:
Ann Arbor : ProQuest Dissertations & Theses, : 2012,
面頁冊數:
131 p.
附註:
Source: Dissertations Abstracts International, Volume: 74-07, Section: B.
Contained By:
Dissertations Abstracts International74-07B.
標題:
Electrical engineering. -
電子資源:
https://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=3531928
ISBN:
9781267743688
Investigation of structural properties of organic thin films for solar cell and transistor applications.
Rahimi, Ronak.
Investigation of structural properties of organic thin films for solar cell and transistor applications.
- Ann Arbor : ProQuest Dissertations & Theses, 2012 - 131 p.
Source: Dissertations Abstracts International, Volume: 74-07, Section: B.
Thesis (Ph.D.)--West Virginia University, 2012.
.
For the past several decades, organic materials including polymers, oligomers and small molecules have been of great interest for their various applications in the electronics and the semiconductor industry. The most appealing advantages of organic materials compared to their inorganic counterparts are their compatibility with flexible substrates and amenability to low-temperature and low-cost fabrication processes such as evaporation, spin-coating and printing. Moreover, the ability to be utilized in fabrication of lightweight and large-area devices is among other reasons for popularity of organic materials. A large number of studies have reported on various aspects of the development and optimization of organic electronics such as organic light emitting diodes (OLEDs), solar cells (OSCs) and thin film transistors (OTFTs). Although significant progress has been made during this period, some of the intrinsic electrical properties of organic materials such as low carrier mobility have continued to hinder the full development and maturation of the organic electronics industry. In order to manufacture organic electronic devices with high performance, more detailed studies of the structure and the morphology of the organic materials as well as the underlying physical charge transport mechanisms should be performed. Additionally, growth, deposition and assembly processes need to be established and optimized for the new organic semiconductor technology. This work aims to advance the understanding of the effect of the structural properties of organic thin films on the charge carrier transport within the organic thin films as well as the charge carrier injection between the organic layers and the organic-inorganic materials such as metal or dielectric layers. Charge carrier transport mechanisms between different layers are crucial factors in determining the efficiency of organic electronic devices. These parameters rely largely on the molecular structure, morphology and ordering of the organic thin films. In order to investigate these intrinsic properties, several organic thin films were prepared using vacuum thermal evaporation method. Their morphology and structural properties were studied by the combination of various techniques including atomic force microscopy, X-ray reflectivity, spectroscopic ellipsometry and transmittance measurements. Based on the produced organic thin films, organic semiconductor devices such as OTFTs and OSCs were fabricated and their electrical and optical properties were characterized. Moreover, the effect of morphology and structure of the organic thin films on the organic device performance was studied. Ambipolar thin film transistors based on pentacene and PTCDI-C8 as the active layer and lithium fluoride (LiF) as the gate dielectric layer were fabricated and characterized. Conduction behaviors of these devices were modeled using Fowler-Nordheim (FN) tunneling theory. The results of this study suggest that the charge transport in OTFTs correlate not only with the organic semiconductor film structure, but also with the dielectric-semiconductor interfacial effects. Moreover, bilayer heterojunction OSCs based on CuPc/PTCDI-C8 as the donor/acceptor layers were fabricated and their electrical and optical properties were characterized. The effects of the active layers' structures and morphologies as well as the buffer layers' thickness variation on the device performance were studied. The results of this study emphasized the importance of the thin film structural properties on the device performance.
ISBN: 9781267743688Subjects--Topical Terms:
649834
Electrical engineering.
Subjects--Index Terms:
Organicd transistors
Investigation of structural properties of organic thin films for solar cell and transistor applications.
LDR
:04805nmm a2200397 4500
001
2399659
005
20240916075429.5
006
m o d
007
cr#unu||||||||
008
251215s2012 ||||||||||||||||| ||eng d
020
$a
9781267743688
035
$a
(MiAaPQ)AAI3531928
035
$a
AAI3531928
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Rahimi, Ronak.
$3
3769631
245
1 0
$a
Investigation of structural properties of organic thin films for solar cell and transistor applications.
260
1
$a
Ann Arbor :
$b
ProQuest Dissertations & Theses,
$c
2012
300
$a
131 p.
500
$a
Source: Dissertations Abstracts International, Volume: 74-07, Section: B.
500
$a
Publisher info.: Dissertation/Thesis.
500
$a
Advisor: Korakakis, Dimitris.
502
$a
Thesis (Ph.D.)--West Virginia University, 2012.
506
$a
.
520
$a
For the past several decades, organic materials including polymers, oligomers and small molecules have been of great interest for their various applications in the electronics and the semiconductor industry. The most appealing advantages of organic materials compared to their inorganic counterparts are their compatibility with flexible substrates and amenability to low-temperature and low-cost fabrication processes such as evaporation, spin-coating and printing. Moreover, the ability to be utilized in fabrication of lightweight and large-area devices is among other reasons for popularity of organic materials. A large number of studies have reported on various aspects of the development and optimization of organic electronics such as organic light emitting diodes (OLEDs), solar cells (OSCs) and thin film transistors (OTFTs). Although significant progress has been made during this period, some of the intrinsic electrical properties of organic materials such as low carrier mobility have continued to hinder the full development and maturation of the organic electronics industry. In order to manufacture organic electronic devices with high performance, more detailed studies of the structure and the morphology of the organic materials as well as the underlying physical charge transport mechanisms should be performed. Additionally, growth, deposition and assembly processes need to be established and optimized for the new organic semiconductor technology. This work aims to advance the understanding of the effect of the structural properties of organic thin films on the charge carrier transport within the organic thin films as well as the charge carrier injection between the organic layers and the organic-inorganic materials such as metal or dielectric layers. Charge carrier transport mechanisms between different layers are crucial factors in determining the efficiency of organic electronic devices. These parameters rely largely on the molecular structure, morphology and ordering of the organic thin films. In order to investigate these intrinsic properties, several organic thin films were prepared using vacuum thermal evaporation method. Their morphology and structural properties were studied by the combination of various techniques including atomic force microscopy, X-ray reflectivity, spectroscopic ellipsometry and transmittance measurements. Based on the produced organic thin films, organic semiconductor devices such as OTFTs and OSCs were fabricated and their electrical and optical properties were characterized. Moreover, the effect of morphology and structure of the organic thin films on the organic device performance was studied. Ambipolar thin film transistors based on pentacene and PTCDI-C8 as the active layer and lithium fluoride (LiF) as the gate dielectric layer were fabricated and characterized. Conduction behaviors of these devices were modeled using Fowler-Nordheim (FN) tunneling theory. The results of this study suggest that the charge transport in OTFTs correlate not only with the organic semiconductor film structure, but also with the dielectric-semiconductor interfacial effects. Moreover, bilayer heterojunction OSCs based on CuPc/PTCDI-C8 as the donor/acceptor layers were fabricated and their electrical and optical properties were characterized. The effects of the active layers' structures and morphologies as well as the buffer layers' thickness variation on the device performance were studied. The results of this study emphasized the importance of the thin film structural properties on the device performance.
590
$a
School code: 0256.
650
4
$a
Electrical engineering.
$3
649834
650
4
$a
Materials science.
$3
543314
650
4
$a
Alternative energy.
$3
3436775
653
$a
Organicd transistors
653
$a
Solar cells
653
$a
Structural properties
653
$a
Thin films
690
$a
0363
690
$a
0544
690
$a
0794
710
2
$a
West Virginia University.
$3
1017532
773
0
$t
Dissertations Abstracts International
$g
74-07B.
790
$a
0256
791
$a
Ph.D.
792
$a
2012
793
$a
English
856
4 0
$u
https://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=3531928
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9507979
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入