語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Solution Processable Organic Semicon...
~
Ko, Sang Won.
FindBook
Google Book
Amazon
博客來
Solution Processable Organic Semiconducting Materials for Thin Film Transistors and Photovoltaic Applications.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Solution Processable Organic Semiconducting Materials for Thin Film Transistors and Photovoltaic Applications./
作者:
Ko, Sang Won.
出版者:
Ann Arbor : ProQuest Dissertations & Theses, : 2011,
面頁冊數:
219 p.
附註:
Source: Dissertations Abstracts International, Volume: 82-04, Section: B.
Contained By:
Dissertations Abstracts International82-04B.
標題:
Materials science. -
電子資源:
https://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=28169289
ISBN:
9798672199030
Solution Processable Organic Semiconducting Materials for Thin Film Transistors and Photovoltaic Applications.
Ko, Sang Won.
Solution Processable Organic Semiconducting Materials for Thin Film Transistors and Photovoltaic Applications.
- Ann Arbor : ProQuest Dissertations & Theses, 2011 - 219 p.
Source: Dissertations Abstracts International, Volume: 82-04, Section: B.
Thesis (Ph.D.)--Stanford University, 2011.
Organic transistors and solar cells offer the potential advantages of low-cost, large-scale fabrication by solution processing techniques, and compatibility with both flexible and lightweight plastic substrates. Continuous development of new organic materials has improved their performance, thus enabling the commercialization of these conducting polymers in recent years. However, understanding the relationship between polymer packing structures and mobilities is still lacking. Furthermore, to enable a polymer to serve as an effective donor material in bulk heterojunction (BHJ) solar cells, several important properties have to be considered, such as band gap, absorption coefficient, effective charge transport, and a relatively deep HOMO. Needless to say, careful balancing of these properties remains challenging. Thus, this thesis aims to gain a better understanding of materials design rules to address the above issues using two types of conjugated polymers. First, new donor-acceptor copolymers were designed and synthesized to gain insights into designing efficient donor materials in BHJ solar cells. Second, poly(3,4-disubstituted thiophene) derivatives were designed and synthesized to study relationships between structural design, packing, charge transport property, and solar cell performance.In the first part of my thesis, I have prepared vinylene linked co-polymers in order to achieve low bandgap polymers by extending π-conjugation lengths. I found that the hole mobilities of the polymers scaled with the molecular weights in these amorphous polymers. Optical absorption at longer wavelengths was improved by eliminating torsions along the polymer backbones. Current density (Jsc) in BHJ solar cells depended on the overall intensity of absorption and hole mobility of donor materials. Comparing to the amorphous vinylene linked co-polymers, charge carrier mobility could be enhanced by employing thienopyrazine based co-polymers, which contain rigid fused aromatic rings promoting well ordered inter-chain packing. Removing of the adjacent thiophene groups around the thienopyrazine acceptor core markedly increased the optical absorption of the polymer and raised its ionization potential, resulting in power conversion efficiency (PCE) of 1.57%. This investigation on the new co-polymers could provide a useful guideline for designing efficient donors for BHJ solar cells.In the second part of my thesis, I designed and synthesized polythiophene derivatives to understand structure-property relationships in detail. Despite their slightly larger band gaps, polythiophene derivatives are nonetheless important active materials due to their high absorption coefficients and high charge transport mobilities. Furthermore, their facile synthesis and ease of structural modifications with various substituents are the advantages of using polythiophene derivatives as model conjugated polymer systems. To examine the influence of backbone twisting on performance of transistors and BHJ solar cells, I systematically imposed twists within the conjugated backbones of poly(3,4-disubtituted thiophene (P34AT) using a unsubstituted thiophene spacer of varying sizes. When a moderate twist was introduced to the P34AT backbone, a 19% enhancement in the open-circuit voltage vs. poly(3-hexylthiopene) based devices and high PCE (4.2%) were achieved without sacrificing the short-circuit current density and the fill factor. Despite the high charge transport mobility (0.17 cm2/Vs), P34AT hardly showed π-π stacking in X-ray diffraction, suggesting that a strong π-π stacking is not always necessary for high charge carrier mobility; in which other potential polymer packing motifs (in addition to the edge-on structure) can lead to a high device performance. To gain further knowledge in structure-property relationships of the less explored 3,4-disubstituted polythiophene system, various P34AT derivatives were prepared and their opto-electronic property, packing structure, and device performance were studied. Among P34AT derivatives containing fused thiophene rings, a higher PCE was achieved with a benzodithiophene based polymer (PDHBDT) having a larger absorption coefficient, higher hole mobility, and deeper HOMO. The PDHBDT also exhibited a thermotropic phase transition behavior, leading to mobility up to 0.46 cm2/Vs where the polymer backbones adapt an edge-on lamellar packing structure.In the last part of this thesis, low band gap P34AT derivatives, which incorporate electron withdrawing groups, were prepared to improve photocurrent. However, I observed that a low absorption coefficient and a low hole mobility limited current density in solar cells. Thus, this indicates that low band gap polymers with strong absorption properties and good charge transports are critical towards molecular design for achieving high PCE. Collectively, through rational design and characterization of these novel polymers, this thesis has illustrated that better understanding of molecular design rules for engineering opto-electronic properties and packing behavior, will lead to higher device performance.
ISBN: 9798672199030Subjects--Topical Terms:
543314
Materials science.
Subjects--Index Terms:
Vinylene linked co-polymers
Solution Processable Organic Semiconducting Materials for Thin Film Transistors and Photovoltaic Applications.
LDR
:06402nmm a2200385 4500
001
2399555
005
20240916075405.5
006
m o d
007
cr#unu||||||||
008
251215s2011 ||||||||||||||||| ||eng d
020
$a
9798672199030
035
$a
(MiAaPQ)AAI28169289
035
$a
(MiAaPQ)STANFORDxx259tf5123
035
$a
AAI28169289
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Ko, Sang Won.
$3
3769525
245
1 0
$a
Solution Processable Organic Semiconducting Materials for Thin Film Transistors and Photovoltaic Applications.
260
1
$a
Ann Arbor :
$b
ProQuest Dissertations & Theses,
$c
2011
300
$a
219 p.
500
$a
Source: Dissertations Abstracts International, Volume: 82-04, Section: B.
500
$a
Advisor: Bao, Zhenan;Huestis, Wray;Sellinger, Alan.
502
$a
Thesis (Ph.D.)--Stanford University, 2011.
520
$a
Organic transistors and solar cells offer the potential advantages of low-cost, large-scale fabrication by solution processing techniques, and compatibility with both flexible and lightweight plastic substrates. Continuous development of new organic materials has improved their performance, thus enabling the commercialization of these conducting polymers in recent years. However, understanding the relationship between polymer packing structures and mobilities is still lacking. Furthermore, to enable a polymer to serve as an effective donor material in bulk heterojunction (BHJ) solar cells, several important properties have to be considered, such as band gap, absorption coefficient, effective charge transport, and a relatively deep HOMO. Needless to say, careful balancing of these properties remains challenging. Thus, this thesis aims to gain a better understanding of materials design rules to address the above issues using two types of conjugated polymers. First, new donor-acceptor copolymers were designed and synthesized to gain insights into designing efficient donor materials in BHJ solar cells. Second, poly(3,4-disubstituted thiophene) derivatives were designed and synthesized to study relationships between structural design, packing, charge transport property, and solar cell performance.In the first part of my thesis, I have prepared vinylene linked co-polymers in order to achieve low bandgap polymers by extending π-conjugation lengths. I found that the hole mobilities of the polymers scaled with the molecular weights in these amorphous polymers. Optical absorption at longer wavelengths was improved by eliminating torsions along the polymer backbones. Current density (Jsc) in BHJ solar cells depended on the overall intensity of absorption and hole mobility of donor materials. Comparing to the amorphous vinylene linked co-polymers, charge carrier mobility could be enhanced by employing thienopyrazine based co-polymers, which contain rigid fused aromatic rings promoting well ordered inter-chain packing. Removing of the adjacent thiophene groups around the thienopyrazine acceptor core markedly increased the optical absorption of the polymer and raised its ionization potential, resulting in power conversion efficiency (PCE) of 1.57%. This investigation on the new co-polymers could provide a useful guideline for designing efficient donors for BHJ solar cells.In the second part of my thesis, I designed and synthesized polythiophene derivatives to understand structure-property relationships in detail. Despite their slightly larger band gaps, polythiophene derivatives are nonetheless important active materials due to their high absorption coefficients and high charge transport mobilities. Furthermore, their facile synthesis and ease of structural modifications with various substituents are the advantages of using polythiophene derivatives as model conjugated polymer systems. To examine the influence of backbone twisting on performance of transistors and BHJ solar cells, I systematically imposed twists within the conjugated backbones of poly(3,4-disubtituted thiophene (P34AT) using a unsubstituted thiophene spacer of varying sizes. When a moderate twist was introduced to the P34AT backbone, a 19% enhancement in the open-circuit voltage vs. poly(3-hexylthiopene) based devices and high PCE (4.2%) were achieved without sacrificing the short-circuit current density and the fill factor. Despite the high charge transport mobility (0.17 cm2/Vs), P34AT hardly showed π-π stacking in X-ray diffraction, suggesting that a strong π-π stacking is not always necessary for high charge carrier mobility; in which other potential polymer packing motifs (in addition to the edge-on structure) can lead to a high device performance. To gain further knowledge in structure-property relationships of the less explored 3,4-disubstituted polythiophene system, various P34AT derivatives were prepared and their opto-electronic property, packing structure, and device performance were studied. Among P34AT derivatives containing fused thiophene rings, a higher PCE was achieved with a benzodithiophene based polymer (PDHBDT) having a larger absorption coefficient, higher hole mobility, and deeper HOMO. The PDHBDT also exhibited a thermotropic phase transition behavior, leading to mobility up to 0.46 cm2/Vs where the polymer backbones adapt an edge-on lamellar packing structure.In the last part of this thesis, low band gap P34AT derivatives, which incorporate electron withdrawing groups, were prepared to improve photocurrent. However, I observed that a low absorption coefficient and a low hole mobility limited current density in solar cells. Thus, this indicates that low band gap polymers with strong absorption properties and good charge transports are critical towards molecular design for achieving high PCE. Collectively, through rational design and characterization of these novel polymers, this thesis has illustrated that better understanding of molecular design rules for engineering opto-electronic properties and packing behavior, will lead to higher device performance.
590
$a
School code: 0212.
650
4
$a
Materials science.
$3
543314
650
4
$a
Polymer chemistry.
$3
3173488
650
4
$a
Nanotechnology.
$3
526235
653
$a
Vinylene linked co-polymers
653
$a
Bulk heterojunction solar cells
653
$a
Thienopyrazine based co-polymers
653
$a
Polythiophene derivatives
690
$a
0794
690
$a
0652
690
$a
0495
710
2
$a
Stanford University.
$3
754827
773
0
$t
Dissertations Abstracts International
$g
82-04B.
790
$a
0212
791
$a
Ph.D.
792
$a
2011
793
$a
English
856
4 0
$u
https://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=28169289
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9507875
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入