語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Exploring Deep Learning Methods for ...
~
Patra, Shashwat Rajan,
FindBook
Google Book
Amazon
博客來
Exploring Deep Learning Methods for Low Numerical Aperture to High Numerical Aperture Resolution Enhancement in Confocal Microscopy /
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Exploring Deep Learning Methods for Low Numerical Aperture to High Numerical Aperture Resolution Enhancement in Confocal Microscopy // Shashwat Rajan Patra.
作者:
Patra, Shashwat Rajan,
面頁冊數:
1 electronic resource (67 pages)
附註:
Source: Masters Abstracts International, Volume: 84-10.
Contained By:
Masters Abstracts International84-10.
標題:
Computer engineering. -
電子資源:
https://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=30246886
ISBN:
9798379403379
Exploring Deep Learning Methods for Low Numerical Aperture to High Numerical Aperture Resolution Enhancement in Confocal Microscopy /
Patra, Shashwat Rajan,
Exploring Deep Learning Methods for Low Numerical Aperture to High Numerical Aperture Resolution Enhancement in Confocal Microscopy /
Shashwat Rajan Patra. - 1 electronic resource (67 pages)
Source: Masters Abstracts International, Volume: 84-10.
Confocal microscopy is a widely used tool that provides valuable morphological and functional information within cells and tissues. A major advantage of confocal microscopy is its ability to record multi-color and optically sectioned images. A major drawback to confocal microscopy is its diffraction-limited spatial resolution. Though techniques have been developed that break this limit in confocal microscopy, they require additional hardware or accurate estimates of the system's impulse response (e.g., point spread function). Here we investigate two deep learning-based models, the cGAN and cycleGAN, trained with low-resolution (LR) and high-resolution (HR) confocal images to improve spatial resolution in confocal microscopy. Our findings conclude that the cGAN can accurately produce HR images if the training set contains images with a high signal-to-noise ratio. We have also found that the cycleGAN model has the potential to perform as the cGAN model but without the requirement of using paired inputs.
English
ISBN: 9798379403379Subjects--Topical Terms:
621879
Computer engineering.
Subjects--Index Terms:
Deep learning methods
Exploring Deep Learning Methods for Low Numerical Aperture to High Numerical Aperture Resolution Enhancement in Confocal Microscopy /
LDR
:02516nmm a22004333i 4500
001
2396150
005
20250522083158.5
006
m o d
007
cr|nu||||||||
008
251215s2023 miu||||||m |||||||eng d
020
$a
9798379403379
035
$a
(MiAaPQD)AAI30246886
035
$a
AAI30246886
040
$a
MiAaPQD
$b
eng
$c
MiAaPQD
$e
rda
100
1
$a
Patra, Shashwat Rajan,
$e
author.
$3
3765736
245
1 0
$a
Exploring Deep Learning Methods for Low Numerical Aperture to High Numerical Aperture Resolution Enhancement in Confocal Microscopy /
$c
Shashwat Rajan Patra.
264
1
$a
Ann Arbor :
$b
ProQuest Dissertations & Theses,
$c
2023
300
$a
1 electronic resource (67 pages)
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
500
$a
Source: Masters Abstracts International, Volume: 84-10.
500
$a
Advisors: Doblas, Ana Committee members: Balasubramanian, Madhusudhanan; Skalli, Omar.
502
$b
M.S.
$c
The University of Memphis
$d
2023.
520
$a
Confocal microscopy is a widely used tool that provides valuable morphological and functional information within cells and tissues. A major advantage of confocal microscopy is its ability to record multi-color and optically sectioned images. A major drawback to confocal microscopy is its diffraction-limited spatial resolution. Though techniques have been developed that break this limit in confocal microscopy, they require additional hardware or accurate estimates of the system's impulse response (e.g., point spread function). Here we investigate two deep learning-based models, the cGAN and cycleGAN, trained with low-resolution (LR) and high-resolution (HR) confocal images to improve spatial resolution in confocal microscopy. Our findings conclude that the cGAN can accurately produce HR images if the training set contains images with a high signal-to-noise ratio. We have also found that the cycleGAN model has the potential to perform as the cGAN model but without the requirement of using paired inputs.
546
$a
English
590
$a
School code: 1194
650
4
$a
Computer engineering.
$3
621879
650
4
$a
Optics.
$3
517925
650
4
$a
Electrical engineering.
$3
649834
653
$a
Deep learning methods
653
$a
Low numerical aperture
653
$a
High numerical aperture
653
$a
Confocal microscopy
653
$a
Optically sectioned images
690
$a
0464
690
$a
0752
690
$a
0544
710
2
$a
The University of Memphis.
$b
Electrical & Computer Engineering.
$e
degree granting institution.
$3
3765737
720
1
$a
Doblas, Ana
$e
degree supervisor.
773
0
$t
Masters Abstracts International
$g
84-10.
790
$a
1194
791
$a
M.S.
792
$a
2023
856
4 0
$u
https://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=30246886
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9504470
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入