Language:
English
繁體中文
Help
回圖書館首頁
手機版館藏查詢
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
Flexible nonparametric curve estimation
~
Doosti, Hassan.
Linked to FindBook
Google Book
Amazon
博客來
Flexible nonparametric curve estimation
Record Type:
Electronic resources : Monograph/item
Title/Author:
Flexible nonparametric curve estimation/ edited by Hassan Doosti.
other author:
Doosti, Hassan.
Published:
Cham :Springer International Publishing : : 2024.,
Description:
viii, 304 p. :ill. (some col.), digital ;24 cm.
[NT 15003449]:
- Tilted Nonparametric Regression Function Estimation -- Some Asymptotic Properties of Kernel Density Estimation Under Length-Biased and Right-Cencored Data -- Functional Data Analysis: Key Concepts and Applications -- Convolution Process revisited in finite location mixtures and GARFISMA long memory time series -- Non-parametric Estimation of Tsallis Entropy and Residual Tsallis Entropy Under ρ-mixing Dependent Data -- Non-parametric intensity estimation for spatial point patterns with R -- A Censored Semicontinuous Regression for Modeling Clustered /Longitudinal Zero-Inflated Rates and Proportions: An Application to Colorectal Cancer -- Singular Spectrum Analysis -- Hellinger-Bhattacharyya cross-validation for shape-preserving multivariate wavelet thresholding -- Bayesian nonparametrics and mixture modelling -- A kernel scale mixture of the skew-normal distribution -- M-estimation of an intensity function and an underlying population size under random right truncation.
Contained By:
Springer Nature eBook
Subject:
Nonparametric statistics. -
Online resource:
https://doi.org/10.1007/978-3-031-66501-1
ISBN:
9783031665011
Flexible nonparametric curve estimation
Flexible nonparametric curve estimation
[electronic resource] /edited by Hassan Doosti. - Cham :Springer International Publishing :2024. - viii, 304 p. :ill. (some col.), digital ;24 cm.
- Tilted Nonparametric Regression Function Estimation -- Some Asymptotic Properties of Kernel Density Estimation Under Length-Biased and Right-Cencored Data -- Functional Data Analysis: Key Concepts and Applications -- Convolution Process revisited in finite location mixtures and GARFISMA long memory time series -- Non-parametric Estimation of Tsallis Entropy and Residual Tsallis Entropy Under ρ-mixing Dependent Data -- Non-parametric intensity estimation for spatial point patterns with R -- A Censored Semicontinuous Regression for Modeling Clustered /Longitudinal Zero-Inflated Rates and Proportions: An Application to Colorectal Cancer -- Singular Spectrum Analysis -- Hellinger-Bhattacharyya cross-validation for shape-preserving multivariate wavelet thresholding -- Bayesian nonparametrics and mixture modelling -- A kernel scale mixture of the skew-normal distribution -- M-estimation of an intensity function and an underlying population size under random right truncation.
This book delves into the realm of nonparametric estimations, offering insights into essential notions such as probability density, regression, Tsallis Entropy, Residual Tsallis Entropy, and intensity functions. Through a series of carefully crafted chapters, the theoretical foundations of flexible nonparametric estimators are examined, complemented by comprehensive numerical studies. From theorem elucidation to practical applications, the text provides a deep dive into the intricacies of nonparametric curve estimation. Tailored for postgraduate students and researchers seeking to expand their understanding of nonparametric statistics, this book will serve as a valuable resource for anyone who wishes to explore the applications of flexible nonparametric techniques.
ISBN: 9783031665011
Standard No.: 10.1007/978-3-031-66501-1doiSubjects--Topical Terms:
533309
Nonparametric statistics.
LC Class. No.: QA278.8
Dewey Class. No.: 519.544
Flexible nonparametric curve estimation
LDR
:02774nmm a22003375a 4500
001
2388476
003
DE-He213
005
20240905130739.0
006
m d
007
cr nn 008maaau
008
250916s2024 sz s 0 eng d
020
$a
9783031665011
$q
(electronic bk.)
020
$a
9783031665004
$q
(paper)
024
7
$a
10.1007/978-3-031-66501-1
$2
doi
035
$a
978-3-031-66501-1
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA278.8
072
7
$a
PBT
$2
bicssc
072
7
$a
MAT029000
$2
bisacsh
072
7
$a
PBT
$2
thema
082
0 4
$a
519.544
$2
23
090
$a
QA278.8
$b
.F619 2024
245
0 0
$a
Flexible nonparametric curve estimation
$h
[electronic resource] /
$c
edited by Hassan Doosti.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2024.
300
$a
viii, 304 p. :
$b
ill. (some col.), digital ;
$c
24 cm.
347
$a
text file
$b
PDF
$2
rda
505
0
$a
- Tilted Nonparametric Regression Function Estimation -- Some Asymptotic Properties of Kernel Density Estimation Under Length-Biased and Right-Cencored Data -- Functional Data Analysis: Key Concepts and Applications -- Convolution Process revisited in finite location mixtures and GARFISMA long memory time series -- Non-parametric Estimation of Tsallis Entropy and Residual Tsallis Entropy Under ρ-mixing Dependent Data -- Non-parametric intensity estimation for spatial point patterns with R -- A Censored Semicontinuous Regression for Modeling Clustered /Longitudinal Zero-Inflated Rates and Proportions: An Application to Colorectal Cancer -- Singular Spectrum Analysis -- Hellinger-Bhattacharyya cross-validation for shape-preserving multivariate wavelet thresholding -- Bayesian nonparametrics and mixture modelling -- A kernel scale mixture of the skew-normal distribution -- M-estimation of an intensity function and an underlying population size under random right truncation.
520
$a
This book delves into the realm of nonparametric estimations, offering insights into essential notions such as probability density, regression, Tsallis Entropy, Residual Tsallis Entropy, and intensity functions. Through a series of carefully crafted chapters, the theoretical foundations of flexible nonparametric estimators are examined, complemented by comprehensive numerical studies. From theorem elucidation to practical applications, the text provides a deep dive into the intricacies of nonparametric curve estimation. Tailored for postgraduate students and researchers seeking to expand their understanding of nonparametric statistics, this book will serve as a valuable resource for anyone who wishes to explore the applications of flexible nonparametric techniques.
650
0
$a
Nonparametric statistics.
$3
533309
650
0
$a
Estimation theory.
$3
565962
650
1 4
$a
Statistical Theory and Methods.
$3
891074
650
2 4
$a
Biostatistics.
$3
1002712
700
1
$a
Doosti, Hassan.
$3
3723346
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer Nature eBook
856
4 0
$u
https://doi.org/10.1007/978-3-031-66501-1
950
$a
Mathematics and Statistics (SpringerNature-11649)
based on 0 review(s)
Location:
ALL
電子資源
Year:
Volume Number:
Items
1 records • Pages 1 •
1
Inventory Number
Location Name
Item Class
Material type
Call number
Usage Class
Loan Status
No. of reservations
Opac note
Attachments
W9499240
電子資源
11.線上閱覽_V
電子書
EB QA278.8
一般使用(Normal)
On shelf
0
1 records • Pages 1 •
1
Multimedia
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login