Language:
English
繁體中文
Help
回圖書館首頁
手機版館藏查詢
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
Mathematical introduction to data sc...
~
Wegner, Sven A.
Linked to FindBook
Google Book
Amazon
博客來
Mathematical introduction to data science
Record Type:
Electronic resources : Monograph/item
Title/Author:
Mathematical introduction to data science/ by Sven A. Wegner.
Author:
Wegner, Sven A.
Published:
Berlin, Heidelberg :Springer Berlin Heidelberg : : 2024.,
Description:
ix, 299 p. :ill., digital ;24 cm.
[NT 15003449]:
Preface -- 1 What is Data (Science)? -- 2 Affine Linear, Polynomial and Logistic Regression -- 3 k-nearest Neighbors -- 4 Clustering -- 5 Graph Clustering -- 6 Best-Fit Subspaces -- 7 Singular Value Decomposition -- 8 Curse and Blessing of High Dimensionality -- 9 Concentration of Measure -- 10 Gaussian Random Vectors in High Dimensions -- 11 Dimensionality Reduction à la Johnson-Lindenstrauss -- 12 Separation and Fitting of HIgh-Dimensional Gaussians -- 13 Perceptron -- 14 Support Vector Machines -- 15 Kernel Method -- 16 Neural Networks -- 17 Gradient Descent for Convex Functions -- Appendix: Selected Results of Probability Theory -- Bibliography -- Index.
Contained By:
Springer Nature eBook
Subject:
Mathematical analysis. -
Online resource:
https://doi.org/10.1007/978-3-662-69426-8
ISBN:
9783662694268
Mathematical introduction to data science
Wegner, Sven A.
Mathematical introduction to data science
[electronic resource] /by Sven A. Wegner. - Berlin, Heidelberg :Springer Berlin Heidelberg :2024. - ix, 299 p. :ill., digital ;24 cm.
Preface -- 1 What is Data (Science)? -- 2 Affine Linear, Polynomial and Logistic Regression -- 3 k-nearest Neighbors -- 4 Clustering -- 5 Graph Clustering -- 6 Best-Fit Subspaces -- 7 Singular Value Decomposition -- 8 Curse and Blessing of High Dimensionality -- 9 Concentration of Measure -- 10 Gaussian Random Vectors in High Dimensions -- 11 Dimensionality Reduction à la Johnson-Lindenstrauss -- 12 Separation and Fitting of HIgh-Dimensional Gaussians -- 13 Perceptron -- 14 Support Vector Machines -- 15 Kernel Method -- 16 Neural Networks -- 17 Gradient Descent for Convex Functions -- Appendix: Selected Results of Probability Theory -- Bibliography -- Index.
This textbook is intended for students of mathematics who have completed the foundational courses of their undergraduate studies and now want to specialize in Data Science and Machine Learning. It introduces the reader to the most important topics in the latter areas focusing on rigorous proofs and a systematic understanding of the underlying ideas. The textbook comes with 121 classroom-tested exercises. Topics covered include k-nearest neighbors, linear and logistic regression, clustering, best-fit subspaces, principal component analysis, dimensionality reduction, collaborative filtering, perceptron, support vector machines, the kernel method, gradient descent and neural networks. The author Sven A. Wegner earned his PhD in Functional Analysis in 2010. After several international academic positions, he is currently affiliated with the University of Hamburg (Germany)
ISBN: 9783662694268
Standard No.: 10.1007/978-3-662-69426-8doiSubjects--Topical Terms:
516833
Mathematical analysis.
LC Class. No.: QA300
Dewey Class. No.: 515
Mathematical introduction to data science
LDR
:02620nmm a22003495a 4500
001
2388463
003
DE-He213
005
20240831130242.0
006
m d
007
cr nn 008maaau
008
250916s2024 gw s 0 eng d
020
$a
9783662694268
$q
(electronic bk.)
020
$a
9783662694251
$q
(paper)
024
7
$a
10.1007/978-3-662-69426-8
$2
doi
035
$a
978-3-662-69426-8
040
$a
GP
$c
GP
041
1
$a
eng
$h
ger
050
4
$a
QA300
072
7
$a
UN
$2
bicssc
072
7
$a
COM021000
$2
bisacsh
072
7
$a
UN
$2
thema
082
0 4
$a
515
$2
23
090
$a
QA300
$b
.W412 2024
100
1
$a
Wegner, Sven A.
$3
3753561
240
1 0
$a
Mathematische Einführung in Data Science.
$l
English
245
1 0
$a
Mathematical introduction to data science
$h
[electronic resource] /
$c
by Sven A. Wegner.
260
$a
Berlin, Heidelberg :
$b
Springer Berlin Heidelberg :
$b
Imprint: Springer,
$c
2024.
300
$a
ix, 299 p. :
$b
ill., digital ;
$c
24 cm.
347
$a
text file
$b
PDF
$2
rda
505
0
$a
Preface -- 1 What is Data (Science)? -- 2 Affine Linear, Polynomial and Logistic Regression -- 3 k-nearest Neighbors -- 4 Clustering -- 5 Graph Clustering -- 6 Best-Fit Subspaces -- 7 Singular Value Decomposition -- 8 Curse and Blessing of High Dimensionality -- 9 Concentration of Measure -- 10 Gaussian Random Vectors in High Dimensions -- 11 Dimensionality Reduction à la Johnson-Lindenstrauss -- 12 Separation and Fitting of HIgh-Dimensional Gaussians -- 13 Perceptron -- 14 Support Vector Machines -- 15 Kernel Method -- 16 Neural Networks -- 17 Gradient Descent for Convex Functions -- Appendix: Selected Results of Probability Theory -- Bibliography -- Index.
520
$a
This textbook is intended for students of mathematics who have completed the foundational courses of their undergraduate studies and now want to specialize in Data Science and Machine Learning. It introduces the reader to the most important topics in the latter areas focusing on rigorous proofs and a systematic understanding of the underlying ideas. The textbook comes with 121 classroom-tested exercises. Topics covered include k-nearest neighbors, linear and logistic regression, clustering, best-fit subspaces, principal component analysis, dimensionality reduction, collaborative filtering, perceptron, support vector machines, the kernel method, gradient descent and neural networks. The author Sven A. Wegner earned his PhD in Functional Analysis in 2010. After several international academic positions, he is currently affiliated with the University of Hamburg (Germany)
650
0
$a
Mathematical analysis.
$3
516833
650
0
$a
Machine learning
$x
Mathematics.
$3
3442737
650
1 4
$a
Data Analysis and Big Data.
$3
3538537
650
2 4
$a
Data Science.
$3
3538937
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer Nature eBook
856
4 0
$u
https://doi.org/10.1007/978-3-662-69426-8
950
$a
Mathematics and Statistics (SpringerNature-11649)
based on 0 review(s)
Location:
ALL
電子資源
Year:
Volume Number:
Items
1 records • Pages 1 •
1
Inventory Number
Location Name
Item Class
Material type
Call number
Usage Class
Loan Status
No. of reservations
Opac note
Attachments
W9499227
電子資源
11.線上閱覽_V
電子書
EB QA300
一般使用(Normal)
On shelf
0
1 records • Pages 1 •
1
Multimedia
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login