Belief functions = theory and applic...
International Conference on Belief Functions (2024 :)

FindBook      Google Book      Amazon      博客來     
  • Belief functions = theory and applications : 8th International Conference, BELIEF 2024, Belfast, UK, September 2-4, 2024 : proceedings /
  • 紀錄類型: 書目-電子資源 : Monograph/item
    正題名/作者: Belief functions/ edited by Yaxin Bi, Anne-Laure Jousselme, Thierry Denoeux.
    其他題名: theory and applications : 8th International Conference, BELIEF 2024, Belfast, UK, September 2-4, 2024 : proceedings /
    其他題名: BELIEF 2024
    其他作者: Bi, Yaxin.
    團體作者: International Conference on Belief Functions
    出版者: Cham :Springer Nature Switzerland : : 2024.,
    面頁冊數: xiii, 294 p. :ill. (chiefly col.), digital ;24 cm.
    內容註: Machine learning. -- Deep evidential clustering of images. -- Incremental Belief-peaks Evidential Clustering. -- Imprecise Deep Networks for Uncertain Image Classification. -- Dempster-Shafer Credal Probabilistic Circuits. -- Uncertainty quantification in regression neural networks using likelihood-based belief functions. -- An evidential time-to-event prediction model based on Gaussian random fuzzy numbers. -- Object Hallucination Detection in Large Vision Language Models via Evidential Conflict. -- Multi-oversampling with evidence fusion for imbalanced data classification. -- An Evidence-based Framework For Heterogeneous Electronic Health Records: A Case Study In Mortality Prediction. -- Conflict Management in a Distance to Prototype-Based Evidential Deep Learning. -- A Novel Privacy Preserving Framework for Training Dempster-Shafer Theory-based Evidential Deep Neural Network. -- Statistical inference. -- Large-sample theory for inferential models: A possibilistic Bernstein-von Mises theorem. -- Variational approximations of possibilistic inferential models. -- Decision theory via model-free generalized fiducial inference. -- Which statistical hypotheses are afflicted with false confidence?. -- Algebraic expression for the relative likelihood-based evidential prediction of an ordinal variable. -- Information fusion and optimization. -- Why Combining Belief Functions on Quantum Circuits?. -- SHADED: Shapley Value-based Deceptive Evidence Detection in Belief Functions. -- A Novel Optimization-Based Combination Rule for Dempster-Shafer Theory. -- Fusing independent inferential models in a black-box manner. -- Optimization under Severe Uncertainty: a Generalized Minimax Regret Approach for Problems with Linear Objectives. -- Measures of uncertainty, conflict and distances. -- A mean distance between elements of same class for rich labels. -- Threshold Functions and Operations in the Theory of Evidence. -- Mutual Information and Kullback-Leibler Divergence in the Dempster-Shafer Theory. -- An OWA-based Distance Measure for Ordered Frames of Discernment. -- Automated Hierarchical Conflict Reduction for Crowdsourced Annotation Tasks using Belief Functions. -- Continuous belief functions, logics, computation. -- Gamma Belief Functions. -- Combination of Dependent Gaussian Random Fuzzy Numbers. -- A 3-valued Logical Foundation for Evidential Reasoning. -- Accelerated Dempster Shafer using Tensor Train Representation.
    Contained By: Springer Nature eBook
    標題: Decision making - Congresses. - Data processing -
    電子資源: https://doi.org/10.1007/978-3-031-67977-3
    ISBN: 9783031679773
館藏地:  出版年:  卷號: 
館藏
  • 1 筆 • 頁數 1 •
  • 1 筆 • 頁數 1 •
多媒體
評論
Export
取書館
 
 
變更密碼
登入