語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Fundamentals of pattern recognition ...
~
Braga-Neto, Ulisses.
FindBook
Google Book
Amazon
博客來
Fundamentals of pattern recognition and machine learning
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Fundamentals of pattern recognition and machine learning/ by Ulisses Braga-Neto.
作者:
Braga-Neto, Ulisses.
出版者:
Cham :Springer International Publishing : : 2024.,
面頁冊數:
xxi, 400 p. :ill., digital ;24 cm.
內容註:
Introduction -- Optimal Classification -- Sample-Based Classification -- Parametric Classification -- Nonparametric Classification -- Function-Approximation Classification -- Error Estimation for Classification -- Model Selection for Classification -- Dimensionality Reduction -- Clustering -- Regression -- Bayesian Machine Learning -- Scientific -- Machine Learning -- Appendices.
Contained By:
Springer Nature eBook
標題:
Pattern recognition systems. -
電子資源:
https://doi.org/10.1007/978-3-031-60950-3
ISBN:
9783031609503
Fundamentals of pattern recognition and machine learning
Braga-Neto, Ulisses.
Fundamentals of pattern recognition and machine learning
[electronic resource] /by Ulisses Braga-Neto. - Second edition. - Cham :Springer International Publishing :2024. - xxi, 400 p. :ill., digital ;24 cm.
Introduction -- Optimal Classification -- Sample-Based Classification -- Parametric Classification -- Nonparametric Classification -- Function-Approximation Classification -- Error Estimation for Classification -- Model Selection for Classification -- Dimensionality Reduction -- Clustering -- Regression -- Bayesian Machine Learning -- Scientific -- Machine Learning -- Appendices.
This book is a concise but thorough introduction to the tools commonly used in pattern recognition and machine learning, including classification, dimensionality reduction, regression, and clustering, as well as recent popular topics such as deep neural networks and Gaussian process regression. The Second Edition is thoroughly revised, featuring a new chapter on the emerging topic of physics-informed machine learning and additional material on deep neural networks. Combining theory and practice, this book is suitable for the graduate or advanced undergraduate level classroom and self-study. It fills the need of a mathematically-rigorous text that is relevant to the practitioner as well, with datasets from applications in bioinformatics and materials informatics used throughout to illustrate the theory. These datasets are available from the book website to be used in end-of-chapter coding assignments based on python and Keras/Tensorflow. All plots in the text were generated using python scripts and jupyter notebooks, which can be downloaded from the book website.
ISBN: 9783031609503
Standard No.: 10.1007/978-3-031-60950-3doiSubjects--Topical Terms:
527885
Pattern recognition systems.
LC Class. No.: TK7882.P3 / B73 2024
Dewey Class. No.: 006.4
Fundamentals of pattern recognition and machine learning
LDR
:02508nmm a22003495a 4500
001
2387907
003
DE-He213
005
20240807130236.0
006
m d
007
cr nn 008maaau
008
250916s2024 sz s 0 eng d
020
$a
9783031609503
$q
(electronic bk.)
020
$a
9783031609497
$q
(paper)
024
7
$a
10.1007/978-3-031-60950-3
$2
doi
035
$a
978-3-031-60950-3
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
TK7882.P3
$b
B73 2024
072
7
$a
UYT
$2
bicssc
072
7
$a
COM016000
$2
bisacsh
072
7
$a
UYT
$2
thema
082
0 4
$a
006.4
$2
23
090
$a
TK7882.P3
$b
B813 2024
100
1
$a
Braga-Neto, Ulisses.
$3
3503604
245
1 0
$a
Fundamentals of pattern recognition and machine learning
$h
[electronic resource] /
$c
by Ulisses Braga-Neto.
250
$a
Second edition.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2024.
300
$a
xxi, 400 p. :
$b
ill., digital ;
$c
24 cm.
347
$a
text file
$b
PDF
$2
rda
505
0
$a
Introduction -- Optimal Classification -- Sample-Based Classification -- Parametric Classification -- Nonparametric Classification -- Function-Approximation Classification -- Error Estimation for Classification -- Model Selection for Classification -- Dimensionality Reduction -- Clustering -- Regression -- Bayesian Machine Learning -- Scientific -- Machine Learning -- Appendices.
520
$a
This book is a concise but thorough introduction to the tools commonly used in pattern recognition and machine learning, including classification, dimensionality reduction, regression, and clustering, as well as recent popular topics such as deep neural networks and Gaussian process regression. The Second Edition is thoroughly revised, featuring a new chapter on the emerging topic of physics-informed machine learning and additional material on deep neural networks. Combining theory and practice, this book is suitable for the graduate or advanced undergraduate level classroom and self-study. It fills the need of a mathematically-rigorous text that is relevant to the practitioner as well, with datasets from applications in bioinformatics and materials informatics used throughout to illustrate the theory. These datasets are available from the book website to be used in end-of-chapter coding assignments based on python and Keras/Tensorflow. All plots in the text were generated using python scripts and jupyter notebooks, which can be downloaded from the book website.
650
0
$a
Pattern recognition systems.
$3
527885
650
0
$a
Machine learning.
$3
533906
650
0
$a
Image processing
$x
Digital techniques.
$3
532550
650
1 4
$a
Computer Imaging, Vision, Pattern Recognition and Graphics.
$3
890871
650
2 4
$a
Machine Learning.
$3
3382522
650
2 4
$a
Automated Pattern Recognition.
$3
3538549
650
2 4
$a
Bioinformatics.
$3
553671
650
2 4
$a
Computer Vision.
$3
3538524
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer Nature eBook
856
4 0
$u
https://doi.org/10.1007/978-3-031-60950-3
950
$a
Computer Science (SpringerNature-11645)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9498671
電子資源
11.線上閱覽_V
電子書
EB TK7882.P3 B73 2024
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入