語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
FindBook
Google Book
Amazon
博客來
Equivariant cohomology in algebraic geometry
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Equivariant cohomology in algebraic geometry/ David Anderson, William Fulton.
作者:
Anderson, David E.
其他作者:
Fulton, William,
出版者:
Cambridge :Cambridge University Press, : 2024.,
面頁冊數:
xv, 446 p. :ill., digital ;24 cm.
附註:
Title from publisher's bibliographic system (viewed on 11 Oct 2023).
標題:
Geometry, Algebraic. -
電子資源:
https://doi.org/10.1017/9781009349994
ISBN:
9781009349994
Equivariant cohomology in algebraic geometry
Anderson, David E.(Professor of Mathematics)
Equivariant cohomology in algebraic geometry
[electronic resource] /David Anderson, William Fulton. - Cambridge :Cambridge University Press,2024. - xv, 446 p. :ill., digital ;24 cm. - Cambridge studies in advanced mathematics ;210. - Cambridge studies in advanced mathematics ;210..
Title from publisher's bibliographic system (viewed on 11 Oct 2023).
Equivariant cohomology has become an indispensable tool in algebraic geometry and in related areas including representation theory, combinatorial and enumerative geometry, and algebraic combinatorics. This text introduces the main ideas of the subject for first- or second-year graduate students in mathematics, as well as researchers working in algebraic geometry or combinatorics. The first six chapters cover the basics: definitions via finite-dimensional approximation spaces, computations in projective space, and the localization theorem. The rest of the text focuses on examples - toric varieties, Grassmannians, and homogeneous spaces - along with applications to Schubert calculus and degeneracy loci. Prerequisites are kept to a minimum, so that one-semester graduate-level courses in algebraic geometry and topology should be sufficient preparation. Featuring numerous exercises, examples, and material that has not previously appeared in textbook form, this book will be a must-have reference and resource for both students and researchers for years to come.
ISBN: 9781009349994Subjects--Topical Terms:
532048
Geometry, Algebraic.
LC Class. No.: QA564 / .A64 2024
Dewey Class. No.: 516.35
Equivariant cohomology in algebraic geometry
LDR
:02003nmm a2200277 a 4500
001
2378174
003
UkCbUP
005
20231105121604.0
006
m d
007
cr nn 008maaau
008
250304s2024 enk o 1 0 eng d
020
$a
9781009349994
$q
(electronic bk.)
020
$a
9781009349987
$q
(hardback)
020
$a
9781009349970
$q
(paperback)
035
$a
CR9781009349994
040
$a
UkCbUP
$b
eng
$c
UkCbUP
$d
GP
041
0
$a
eng
050
4
$a
QA564
$b
.A64 2024
082
0 4
$a
516.35
$2
23
090
$a
QA564
$b
.A546 2024
100
1
$a
Anderson, David E.
$c
(Professor of Mathematics)
$3
3729323
245
1 0
$a
Equivariant cohomology in algebraic geometry
$h
[electronic resource] /
$c
David Anderson, William Fulton.
260
$a
Cambridge :
$b
Cambridge University Press,
$c
2024.
300
$a
xv, 446 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Cambridge studies in advanced mathematics ;
$v
210
500
$a
Title from publisher's bibliographic system (viewed on 11 Oct 2023).
520
$a
Equivariant cohomology has become an indispensable tool in algebraic geometry and in related areas including representation theory, combinatorial and enumerative geometry, and algebraic combinatorics. This text introduces the main ideas of the subject for first- or second-year graduate students in mathematics, as well as researchers working in algebraic geometry or combinatorics. The first six chapters cover the basics: definitions via finite-dimensional approximation spaces, computations in projective space, and the localization theorem. The rest of the text focuses on examples - toric varieties, Grassmannians, and homogeneous spaces - along with applications to Schubert calculus and degeneracy loci. Prerequisites are kept to a minimum, so that one-semester graduate-level courses in algebraic geometry and topology should be sufficient preparation. Featuring numerous exercises, examples, and material that has not previously appeared in textbook form, this book will be a must-have reference and resource for both students and researchers for years to come.
650
0
$a
Geometry, Algebraic.
$3
532048
650
0
$a
Homology theory.
$3
555733
700
1
$a
Fulton, William,
$d
1939-
$3
699693
830
0
$a
Cambridge studies in advanced mathematics ;
$v
210.
$3
3729324
856
4 0
$u
https://doi.org/10.1017/9781009349994
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9496093
電子資源
11.線上閱覽_V
電子書
EB QA564 .A64 2024
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入