Language:
English
繁體中文
Help
回圖書館首頁
手機版館藏查詢
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
Cooperatively interacting vehicles =...
~
Stiller, Christoph.
Linked to FindBook
Google Book
Amazon
博客來
Cooperatively interacting vehicles = methods and effects of automated cooperation in traffic /
Record Type:
Electronic resources : Monograph/item
Title/Author:
Cooperatively interacting vehicles/ edited by Christoph Stiller ... [et al.].
Reminder of title:
methods and effects of automated cooperation in traffic /
other author:
Stiller, Christoph.
Published:
Cham :Springer International Publishing : : 2024.,
Description:
xi, 608 p. :ill. (some col.), digital ;24 cm.
[NT 15003449]:
Part I. Perception and Prediction with Implicit Communication -- Chapter 1. How cyclists' body posture can support a cooperative interaction in automated driving (Daniel Trommler) -- Chapter 2. Prediction of cyclists' interaction-aware trajectory for cooperative automated vehicles (Dominik Raeck) -- Chapter 3. Detecting Intentions of Vulnerable Road Users Based on Collective Intelligence as a Basis for Automated Driving (DeCoInt2) (Stefan Zernetsch) -- Chapter 4. Analysis and simulation of driving behavior at inner city intersections (Hannes Weinreuter) -- Part II. Perception and Prediction with Explicit Communication -- Chapter 5. Robust Local and Cooperative Perception under Varying Weather Conditions (Jörg Gamerdinger) -- Chapter 6. Design and Evaluation of V2X Communication Protocols for Cooperatively Interacting Automobiles (Quentin Delooz) -- Part III. Motion Planning -- Chapter 7. Interaction-Aware Motion Planning as a Game (Christoph Burger) -- Chapter 8. Designing Maneuver Automata of Motion Primitives for Optimal Cooperative Trajectory Planning (Matheus V. A. Pedrosa) -- Chapter 9. Prioritized Trajectory Planning for Networked Vehicles Using Motion Primitives (Patrick Scheffe) -- Chapter 10. Maneuver-level cooperation of automated vehicles (Matthias Nichting) -- Chapter 11. Hierarchical Motion Planning for Consistent and Safe Decisions in Cooperative Autonomous Driving (Jan Eilbrecht) -- Chapter 12. Specification-Compliant Motion Planning of Cooperative Vehicles Using Reachable Set (Edmond Irani Liu) -- Chapter 13. AutoKnigge - Modeling, Evaluation and Verification of Cooperative Interacting Automobiles (Christian Kehl) -- Chapter 14. Implicit Cooperative Trajectory Planning under Uncertainty with Learned Rewards (Karl Kurzer) -- Chapter 15. Learning Cooperative Trajectories at Intersections in Mixed Traffic via Reinforcement Learning (S. Yan) -- Part IV. Human Factors -- Chapter 16. Cooperative Hub for Cooperative Research on Cooperatively Interacting Vehicles: Use-Cases, Design and Interaction Patterns (Frank Flemisch) -- Chapter 17. Cooperation between Vehicle and Driver: Predicting the Driver's Takeover Capability in Cooperative Automated Driving based on Orientation Patterns (Nicolas Herzberger) -- Chapter 18. Confidence Horizons: Dynamic Balance of Human and Automation Control Ability in Cooperative Automated Driving (Marcel Usai) -- Chapter 19. Cooperation Behavior of Drivers at Inner City Deadlock-Situations (Nadine-Rebecca Strelau) -- Chapter 20. Measuring and describing cooperation between road users - Results from CoMove (Laura Quante)
Contained By:
Springer Nature eBook
Subject:
Intelligent transportation systems. -
Online resource:
https://doi.org/10.1007/978-3-031-60494-2
ISBN:
9783031604942
Cooperatively interacting vehicles = methods and effects of automated cooperation in traffic /
Cooperatively interacting vehicles
methods and effects of automated cooperation in traffic /[electronic resource] :edited by Christoph Stiller ... [et al.]. - Cham :Springer International Publishing :2024. - xi, 608 p. :ill. (some col.), digital ;24 cm.
Part I. Perception and Prediction with Implicit Communication -- Chapter 1. How cyclists' body posture can support a cooperative interaction in automated driving (Daniel Trommler) -- Chapter 2. Prediction of cyclists' interaction-aware trajectory for cooperative automated vehicles (Dominik Raeck) -- Chapter 3. Detecting Intentions of Vulnerable Road Users Based on Collective Intelligence as a Basis for Automated Driving (DeCoInt2) (Stefan Zernetsch) -- Chapter 4. Analysis and simulation of driving behavior at inner city intersections (Hannes Weinreuter) -- Part II. Perception and Prediction with Explicit Communication -- Chapter 5. Robust Local and Cooperative Perception under Varying Weather Conditions (Jörg Gamerdinger) -- Chapter 6. Design and Evaluation of V2X Communication Protocols for Cooperatively Interacting Automobiles (Quentin Delooz) -- Part III. Motion Planning -- Chapter 7. Interaction-Aware Motion Planning as a Game (Christoph Burger) -- Chapter 8. Designing Maneuver Automata of Motion Primitives for Optimal Cooperative Trajectory Planning (Matheus V. A. Pedrosa) -- Chapter 9. Prioritized Trajectory Planning for Networked Vehicles Using Motion Primitives (Patrick Scheffe) -- Chapter 10. Maneuver-level cooperation of automated vehicles (Matthias Nichting) -- Chapter 11. Hierarchical Motion Planning for Consistent and Safe Decisions in Cooperative Autonomous Driving (Jan Eilbrecht) -- Chapter 12. Specification-Compliant Motion Planning of Cooperative Vehicles Using Reachable Set (Edmond Irani Liu) -- Chapter 13. AutoKnigge - Modeling, Evaluation and Verification of Cooperative Interacting Automobiles (Christian Kehl) -- Chapter 14. Implicit Cooperative Trajectory Planning under Uncertainty with Learned Rewards (Karl Kurzer) -- Chapter 15. Learning Cooperative Trajectories at Intersections in Mixed Traffic via Reinforcement Learning (S. Yan) -- Part IV. Human Factors -- Chapter 16. Cooperative Hub for Cooperative Research on Cooperatively Interacting Vehicles: Use-Cases, Design and Interaction Patterns (Frank Flemisch) -- Chapter 17. Cooperation between Vehicle and Driver: Predicting the Driver's Takeover Capability in Cooperative Automated Driving based on Orientation Patterns (Nicolas Herzberger) -- Chapter 18. Confidence Horizons: Dynamic Balance of Human and Automation Control Ability in Cooperative Automated Driving (Marcel Usai) -- Chapter 19. Cooperation Behavior of Drivers at Inner City Deadlock-Situations (Nadine-Rebecca Strelau) -- Chapter 20. Measuring and describing cooperation between road users - Results from CoMove (Laura Quante)
Open access.
This open access book explores the recent developments automated driving and Car2x-communications are opening up attractive opportunities future mobility. The DFG priority program "Cooperatively Interacting Automobiles" has focused on the scientific foundations for communication-based automated cooperativity in traffic. Communication among traffic participants allows for safe and convenient traffic that will emerge in swarm like flow. This book investigates requirements for a cooperative transport system, motion generation that is safe and effective and yields social acceptance by all road users, as well as appropriate system architectures and robust cooperative cognition. For many years, traffic will not be fully automated, but automated vehicles share their space with manually driven vehicles, two-wheelers, pedestrians, and others. Such a mixed traffic scenario exhibits numerous facets of potential cooperation. Automated vehicles must understand basic principles of human interaction in traffic situations. Methods for the anticipation of human movement as well as methods for generating behavior that can be anticipated by others are required. Explicit maneuver coordination among automated vehicles using Car2X-communications allows generation of safe trajectories within milliseconds, even in safety-critical situations, in which drivers are unable to communicate and react, whereas today's vehicles delete their information after passing through a situation, cooperatively interacting automobiles should aggregate their knowledge in a collective data and information base and make it available to subsequent traffic.
ISBN: 9783031604942
Standard No.: 10.1007/978-3-031-60494-2doiSubjects--Topical Terms:
1066364
Intelligent transportation systems.
LC Class. No.: TE228.3
Dewey Class. No.: 388.312
Cooperatively interacting vehicles = methods and effects of automated cooperation in traffic /
LDR
:05300nmm a2200337 a 4500
001
2374244
003
DE-He213
005
20240802130255.0
006
m d
007
cr nn 008maaau
008
241231s2024 sz s 0 eng d
020
$a
9783031604942
$q
(electronic bk.)
020
$a
9783031604935
$q
(paper)
024
7
$a
10.1007/978-3-031-60494-2
$2
doi
035
$a
978-3-031-60494-2
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
TE228.3
072
7
$a
TRC
$2
bicssc
072
7
$a
TEC009090
$2
bisacsh
072
7
$a
TRC
$2
thema
082
0 4
$a
388.312
$2
23
090
$a
TE228.3
$b
.C778 2024
245
0 0
$a
Cooperatively interacting vehicles
$h
[electronic resource] :
$b
methods and effects of automated cooperation in traffic /
$c
edited by Christoph Stiller ... [et al.].
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2024.
300
$a
xi, 608 p. :
$b
ill. (some col.), digital ;
$c
24 cm.
505
0
$a
Part I. Perception and Prediction with Implicit Communication -- Chapter 1. How cyclists' body posture can support a cooperative interaction in automated driving (Daniel Trommler) -- Chapter 2. Prediction of cyclists' interaction-aware trajectory for cooperative automated vehicles (Dominik Raeck) -- Chapter 3. Detecting Intentions of Vulnerable Road Users Based on Collective Intelligence as a Basis for Automated Driving (DeCoInt2) (Stefan Zernetsch) -- Chapter 4. Analysis and simulation of driving behavior at inner city intersections (Hannes Weinreuter) -- Part II. Perception and Prediction with Explicit Communication -- Chapter 5. Robust Local and Cooperative Perception under Varying Weather Conditions (Jörg Gamerdinger) -- Chapter 6. Design and Evaluation of V2X Communication Protocols for Cooperatively Interacting Automobiles (Quentin Delooz) -- Part III. Motion Planning -- Chapter 7. Interaction-Aware Motion Planning as a Game (Christoph Burger) -- Chapter 8. Designing Maneuver Automata of Motion Primitives for Optimal Cooperative Trajectory Planning (Matheus V. A. Pedrosa) -- Chapter 9. Prioritized Trajectory Planning for Networked Vehicles Using Motion Primitives (Patrick Scheffe) -- Chapter 10. Maneuver-level cooperation of automated vehicles (Matthias Nichting) -- Chapter 11. Hierarchical Motion Planning for Consistent and Safe Decisions in Cooperative Autonomous Driving (Jan Eilbrecht) -- Chapter 12. Specification-Compliant Motion Planning of Cooperative Vehicles Using Reachable Set (Edmond Irani Liu) -- Chapter 13. AutoKnigge - Modeling, Evaluation and Verification of Cooperative Interacting Automobiles (Christian Kehl) -- Chapter 14. Implicit Cooperative Trajectory Planning under Uncertainty with Learned Rewards (Karl Kurzer) -- Chapter 15. Learning Cooperative Trajectories at Intersections in Mixed Traffic via Reinforcement Learning (S. Yan) -- Part IV. Human Factors -- Chapter 16. Cooperative Hub for Cooperative Research on Cooperatively Interacting Vehicles: Use-Cases, Design and Interaction Patterns (Frank Flemisch) -- Chapter 17. Cooperation between Vehicle and Driver: Predicting the Driver's Takeover Capability in Cooperative Automated Driving based on Orientation Patterns (Nicolas Herzberger) -- Chapter 18. Confidence Horizons: Dynamic Balance of Human and Automation Control Ability in Cooperative Automated Driving (Marcel Usai) -- Chapter 19. Cooperation Behavior of Drivers at Inner City Deadlock-Situations (Nadine-Rebecca Strelau) -- Chapter 20. Measuring and describing cooperation between road users - Results from CoMove (Laura Quante)
506
$a
Open access.
520
$a
This open access book explores the recent developments automated driving and Car2x-communications are opening up attractive opportunities future mobility. The DFG priority program "Cooperatively Interacting Automobiles" has focused on the scientific foundations for communication-based automated cooperativity in traffic. Communication among traffic participants allows for safe and convenient traffic that will emerge in swarm like flow. This book investigates requirements for a cooperative transport system, motion generation that is safe and effective and yields social acceptance by all road users, as well as appropriate system architectures and robust cooperative cognition. For many years, traffic will not be fully automated, but automated vehicles share their space with manually driven vehicles, two-wheelers, pedestrians, and others. Such a mixed traffic scenario exhibits numerous facets of potential cooperation. Automated vehicles must understand basic principles of human interaction in traffic situations. Methods for the anticipation of human movement as well as methods for generating behavior that can be anticipated by others are required. Explicit maneuver coordination among automated vehicles using Car2X-communications allows generation of safe trajectories within milliseconds, even in safety-critical situations, in which drivers are unable to communicate and react, whereas today's vehicles delete their information after passing through a situation, cooperatively interacting automobiles should aggregate their knowledge in a collective data and information base and make it available to subsequent traffic.
650
0
$a
Intelligent transportation systems.
$3
1066364
650
0
$a
Automated vehicles.
$3
3443235
650
1 4
$a
Automotive Engineering.
$3
928032
650
2 4
$a
Electrical and Electronic Engineering.
$3
3591890
650
2 4
$a
Software Engineering.
$3
890874
700
1
$a
Stiller, Christoph.
$3
3722957
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer Nature eBook
856
4 0
$u
https://doi.org/10.1007/978-3-031-60494-2
950
$a
Engineering (SpringerNature-11647)
based on 0 review(s)
Location:
ALL
電子資源
Year:
Volume Number:
Items
1 records • Pages 1 •
1
Inventory Number
Location Name
Item Class
Material type
Call number
Usage Class
Loan Status
No. of reservations
Opac note
Attachments
W9494693
電子資源
11.線上閱覽_V
電子書
EB TE228.3
一般使用(Normal)
On shelf
0
1 records • Pages 1 •
1
Multimedia
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login