語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
A first course in boundary element m...
~
Crouch, Steven L.
FindBook
Google Book
Amazon
博客來
A first course in boundary element methods
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
A first course in boundary element methods/ by Steven L. Crouch, Sofia G. Mogilevskaya.
作者:
Crouch, Steven L.
其他作者:
Mogilevskaya, Sofia G.
出版者:
Cham :Springer Nature Switzerland : : 2024.,
面頁冊數:
xiv, 477 p. :ill., digital ;24 cm.
內容註:
1. An Illustration of the Boundary Element Approach -- 2. Potential Theory -- 3. The Direct Boundary Integral Method for Laplace's Equation -- 4. Elasticity -- 5. The Stress Discontinuity Method.
Contained By:
Springer Nature eBook
標題:
Boundary element methods. -
電子資源:
https://doi.org/10.1007/978-3-031-63341-6
ISBN:
9783031633416
A first course in boundary element methods
Crouch, Steven L.
A first course in boundary element methods
[electronic resource] /by Steven L. Crouch, Sofia G. Mogilevskaya. - Cham :Springer Nature Switzerland :2024. - xiv, 477 p. :ill., digital ;24 cm. - Mathematical engineering,2192-4740. - Mathematical engineering..
1. An Illustration of the Boundary Element Approach -- 2. Potential Theory -- 3. The Direct Boundary Integral Method for Laplace's Equation -- 4. Elasticity -- 5. The Stress Discontinuity Method.
This textbook delves into the theory and practical application of boundary integral equation techniques, focusing on their numerical solution for boundary value problems within potential theory and linear elasticity. Drawing parallels between single and double layer potentials in potential theory and their counterparts in elasticity, the book introduces various numerical procedures, namely boundary element methods, where unknown quantities reside on the boundaries of the region of interest. Through the approximation of boundary value problems into systems of algebraic equations, solvable by standard numerical methods, the text elucidates both indirect and direct approaches. While indirect methods involve single or double layer potentials separately, yielding physically ambiguous results, direct methods combine potentials using Green's or Somigliana's formulas, providing physically meaningful solutions. Tailored for beginning graduate students, this self-contained textbook offers detailed analytical and numerical derivations for isotropic and anisotropic materials, prioritizing simplicity in presentation while progressively advancing towards more intricate mathematical concepts, particularly focusing on two-dimensional problems within potential theory and linear elasticity.
ISBN: 9783031633416
Standard No.: 10.1007/978-3-031-63341-6doiSubjects--Topical Terms:
566490
Boundary element methods.
LC Class. No.: TA347.B69
Dewey Class. No.: 620.00151535
A first course in boundary element methods
LDR
:02520nmm a2200337 a 4500
001
2374187
003
DE-He213
005
20240722125240.0
006
m d
007
cr nn 008maaau
008
241231s2024 sz s 0 eng d
020
$a
9783031633416
$q
(electronic bk.)
020
$a
9783031633409
$q
(paper)
024
7
$a
10.1007/978-3-031-63341-6
$2
doi
035
$a
978-3-031-63341-6
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
TA347.B69
072
7
$a
TGB
$2
bicssc
072
7
$a
TEC009070
$2
bisacsh
072
7
$a
TGB
$2
thema
082
0 4
$a
620.00151535
$2
23
090
$a
TA347.B69
$b
C952 2024
100
1
$a
Crouch, Steven L.
$3
3722867
245
1 2
$a
A first course in boundary element methods
$h
[electronic resource] /
$c
by Steven L. Crouch, Sofia G. Mogilevskaya.
260
$a
Cham :
$b
Springer Nature Switzerland :
$b
Imprint: Springer,
$c
2024.
300
$a
xiv, 477 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Mathematical engineering,
$x
2192-4740
505
0
$a
1. An Illustration of the Boundary Element Approach -- 2. Potential Theory -- 3. The Direct Boundary Integral Method for Laplace's Equation -- 4. Elasticity -- 5. The Stress Discontinuity Method.
520
$a
This textbook delves into the theory and practical application of boundary integral equation techniques, focusing on their numerical solution for boundary value problems within potential theory and linear elasticity. Drawing parallels between single and double layer potentials in potential theory and their counterparts in elasticity, the book introduces various numerical procedures, namely boundary element methods, where unknown quantities reside on the boundaries of the region of interest. Through the approximation of boundary value problems into systems of algebraic equations, solvable by standard numerical methods, the text elucidates both indirect and direct approaches. While indirect methods involve single or double layer potentials separately, yielding physically ambiguous results, direct methods combine potentials using Green's or Somigliana's formulas, providing physically meaningful solutions. Tailored for beginning graduate students, this self-contained textbook offers detailed analytical and numerical derivations for isotropic and anisotropic materials, prioritizing simplicity in presentation while progressively advancing towards more intricate mathematical concepts, particularly focusing on two-dimensional problems within potential theory and linear elasticity.
650
0
$a
Boundary element methods.
$3
566490
650
1 4
$a
Engineering Mechanics.
$3
3538834
650
2 4
$a
Mechanical Engineering.
$3
891038
650
2 4
$a
Mathematical and Computational Engineering Applications.
$3
3592737
700
1
$a
Mogilevskaya, Sofia G.
$3
3722868
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer Nature eBook
830
0
$a
Mathematical engineering.
$3
2055144
856
4 0
$u
https://doi.org/10.1007/978-3-031-63341-6
950
$a
Engineering (SpringerNature-11647)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9494636
電子資源
11.線上閱覽_V
電子書
EB TA347.B69
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入