語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
FindBook
Google Book
Amazon
博客來
Deep Learning Approach to Skeletal Performance Evaluation of Physical Therapy Exercises.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Deep Learning Approach to Skeletal Performance Evaluation of Physical Therapy Exercises./
作者:
Garg, Bhanu.
面頁冊數:
1 online resource (33 pages)
附註:
Source: Masters Abstracts International, Volume: 85-01.
Contained By:
Masters Abstracts International85-01.
標題:
Computer science. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=30523402click for full text (PQDT)
ISBN:
9798379918309
Deep Learning Approach to Skeletal Performance Evaluation of Physical Therapy Exercises.
Garg, Bhanu.
Deep Learning Approach to Skeletal Performance Evaluation of Physical Therapy Exercises.
- 1 online resource (33 pages)
Source: Masters Abstracts International, Volume: 85-01.
Thesis (M.S.)--University of California, San Diego, 2023.
Includes bibliographical references
At-home exercising strongly predicts physical therapy patient outcomes, underscoring the need for analyzing patient behaviors at-home via remote patient monitoring. Contemporary methods for remote patient monitoring rely on specialized sensors, i.e., Inertial Measurement Units, RGB-Depth cameras, motion capture systems, or stereo vision which are costly and not scalable to all physical therapy patients. Here, we observe a lack of literature using only a monocular RGB camera. In this paper, we demonstrate a skeletal feedback model for at-home exercises using only video acquired from a smartphone camera. We propose models for (i) Patient Performance Evaluation - which classifies the correctness of exercises, and (ii) Guidance - which identifies why the exercise went wrong so the patient can correct themselves. We use these models on our dataset of four common physical therapy exercises labeled by a physical therapist. Our results demonstrate the feasibility of using skeletal data from state-of-the-art 3D human pose estimation models for physical rehabilitation exercise evaluation and guidance. Thus, we enable remote patient monitoring and guidance from a single camera - making it highly cost-effective and scalable.
Electronic reproduction.
Ann Arbor, Mich. :
ProQuest,
2023
Mode of access: World Wide Web
ISBN: 9798379918309Subjects--Topical Terms:
523869
Computer science.
Subjects--Index Terms:
Deep learningIndex Terms--Genre/Form:
542853
Electronic books.
Deep Learning Approach to Skeletal Performance Evaluation of Physical Therapy Exercises.
LDR
:02613nmm a2200397K 4500
001
2360910
005
20231015185450.5
006
m o d
007
cr mn ---uuuuu
008
241011s2023 xx obm 000 0 eng d
020
$a
9798379918309
035
$a
(MiAaPQ)AAI30523402
035
$a
AAI30523402
040
$a
MiAaPQ
$b
eng
$c
MiAaPQ
$d
NTU
100
1
$a
Garg, Bhanu.
$3
3701550
245
1 0
$a
Deep Learning Approach to Skeletal Performance Evaluation of Physical Therapy Exercises.
264
0
$c
2023
300
$a
1 online resource (33 pages)
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
500
$a
Source: Masters Abstracts International, Volume: 85-01.
500
$a
Advisor: Dey, Sujit.
502
$a
Thesis (M.S.)--University of California, San Diego, 2023.
504
$a
Includes bibliographical references
520
$a
At-home exercising strongly predicts physical therapy patient outcomes, underscoring the need for analyzing patient behaviors at-home via remote patient monitoring. Contemporary methods for remote patient monitoring rely on specialized sensors, i.e., Inertial Measurement Units, RGB-Depth cameras, motion capture systems, or stereo vision which are costly and not scalable to all physical therapy patients. Here, we observe a lack of literature using only a monocular RGB camera. In this paper, we demonstrate a skeletal feedback model for at-home exercises using only video acquired from a smartphone camera. We propose models for (i) Patient Performance Evaluation - which classifies the correctness of exercises, and (ii) Guidance - which identifies why the exercise went wrong so the patient can correct themselves. We use these models on our dataset of four common physical therapy exercises labeled by a physical therapist. Our results demonstrate the feasibility of using skeletal data from state-of-the-art 3D human pose estimation models for physical rehabilitation exercise evaluation and guidance. Thus, we enable remote patient monitoring and guidance from a single camera - making it highly cost-effective and scalable.
533
$a
Electronic reproduction.
$b
Ann Arbor, Mich. :
$c
ProQuest,
$d
2023
538
$a
Mode of access: World Wide Web
650
4
$a
Computer science.
$3
523869
650
4
$a
Physical therapy.
$3
588713
650
4
$a
Electrical engineering.
$3
649834
653
$a
Deep learning
653
$a
Home monitoring
653
$a
Patient Performance Evaluation
653
$a
Posture correction
653
$a
PT rehabilitation
655
7
$a
Electronic books.
$2
lcsh
$3
542853
690
$a
0984
690
$a
0382
690
$a
0544
710
2
$a
ProQuest Information and Learning Co.
$3
783688
710
2
$a
University of California, San Diego.
$b
Electrical and Computer Engineering.
$3
3432690
773
0
$t
Masters Abstracts International
$g
85-01.
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=30523402
$z
click for full text (PQDT)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9483266
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入