Language:
English
繁體中文
Help
回圖書館首頁
手機版館藏查詢
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
Linked to FindBook
Google Book
Amazon
博客來
Haupt-Kapovich Theorem Revisited.
Record Type:
Electronic resources : Monograph/item
Title/Author:
Haupt-Kapovich Theorem Revisited./
Author:
Deev, Rodion N.
Description:
1 online resource (73 pages)
Notes:
Source: Dissertations Abstracts International, Volume: 83-02, Section: B.
Contained By:
Dissertations Abstracts International83-02B.
Subject:
Mathematics. -
Online resource:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=28322375click for full text (PQDT)
ISBN:
9798534676327
Haupt-Kapovich Theorem Revisited.
Deev, Rodion N.
Haupt-Kapovich Theorem Revisited.
- 1 online resource (73 pages)
Source: Dissertations Abstracts International, Volume: 83-02, Section: B.
Thesis (Ph.D.)--New York University, 2021.
Includes bibliographical references
A theorem of O. Haupt, rediscovered by M. Kapovich and celebrated by his proof invoking Ratner theory, describes the set of de Rham cohomology classes on a topological orientable surface, which can be realized by an abelian differential in some respective complex structure, in purely topological terms. We give a simplification of Kapovich's proof and make an attempt to describe similarly pairs and triples of cohomology classes, which can be realized by abelian differentials in some complex structure. This leads to some interesting problems in algebraic geometry of curves, and gives an unexpected local description of the Teichmuller space.
Electronic reproduction.
Ann Arbor, Mich. :
ProQuest,
2023
Mode of access: World Wide Web
ISBN: 9798534676327Subjects--Topical Terms:
515831
Mathematics.
Subjects--Index Terms:
Abelian surfacesIndex Terms--Genre/Form:
542853
Electronic books.
Haupt-Kapovich Theorem Revisited.
LDR
:01874nmm a2200349K 4500
001
2357193
005
20230622065013.5
006
m o d
007
cr mn ---uuuuu
008
241011s2021 xx obm 000 0 eng d
020
$a
9798534676327
035
$a
(MiAaPQ)AAI28322375
035
$a
AAI28322375
040
$a
MiAaPQ
$b
eng
$c
MiAaPQ
$d
NTU
100
1
$a
Deev, Rodion N.
$3
3697725
245
1 0
$a
Haupt-Kapovich Theorem Revisited.
264
0
$c
2021
300
$a
1 online resource (73 pages)
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
500
$a
Source: Dissertations Abstracts International, Volume: 83-02, Section: B.
500
$a
Advisor: Bogomolov, Fedor A.
502
$a
Thesis (Ph.D.)--New York University, 2021.
504
$a
Includes bibliographical references
520
$a
A theorem of O. Haupt, rediscovered by M. Kapovich and celebrated by his proof invoking Ratner theory, describes the set of de Rham cohomology classes on a topological orientable surface, which can be realized by an abelian differential in some respective complex structure, in purely topological terms. We give a simplification of Kapovich's proof and make an attempt to describe similarly pairs and triples of cohomology classes, which can be realized by abelian differentials in some complex structure. This leads to some interesting problems in algebraic geometry of curves, and gives an unexpected local description of the Teichmuller space.
533
$a
Electronic reproduction.
$b
Ann Arbor, Mich. :
$c
ProQuest,
$d
2023
538
$a
Mode of access: World Wide Web
650
4
$a
Mathematics.
$3
515831
650
4
$a
Maps.
$3
544078
650
4
$a
Mapping.
$3
3355992
650
4
$a
Neighborhoods.
$3
993475
653
$a
Abelian surfaces
653
$a
Riemannian surfaces
653
$a
Teichmuller theory
655
7
$a
Electronic books.
$2
lcsh
$3
542853
690
$a
0405
710
2
$a
ProQuest Information and Learning Co.
$3
783688
710
2
$a
New York University.
$b
Mathematics.
$3
1019424
773
0
$t
Dissertations Abstracts International
$g
83-02B.
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=28322375
$z
click for full text (PQDT)
based on 0 review(s)
Location:
ALL
電子資源
Year:
Volume Number:
Items
1 records • Pages 1 •
1
Inventory Number
Location Name
Item Class
Material type
Call number
Usage Class
Loan Status
No. of reservations
Opac note
Attachments
W9479549
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
On shelf
0
1 records • Pages 1 •
1
Multimedia
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login