Language:
English
繁體中文
Help
回圖書館首頁
手機版館藏查詢
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
Linked to FindBook
Google Book
Amazon
博客來
Phenotypic Plasticity in Economically and Ecologically Important Bivalves in Response to Changing Environments.
Record Type:
Electronic resources : Monograph/item
Title/Author:
Phenotypic Plasticity in Economically and Ecologically Important Bivalves in Response to Changing Environments./
Author:
Alma, Lindsay.
Description:
1 online resource (223 pages)
Notes:
Source: Dissertations Abstracts International, Volume: 84-04, Section: B.
Contained By:
Dissertations Abstracts International84-04B.
Subject:
Physiology. -
Online resource:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=29067531click for full text (PQDT)
ISBN:
9798351439495
Phenotypic Plasticity in Economically and Ecologically Important Bivalves in Response to Changing Environments.
Alma, Lindsay.
Phenotypic Plasticity in Economically and Ecologically Important Bivalves in Response to Changing Environments.
- 1 online resource (223 pages)
Source: Dissertations Abstracts International, Volume: 84-04, Section: B.
Thesis (Ph.D.)--University of Washington, 2022.
Includes bibliographical references
Marine bivalves are ecologically important, providing ecosystem services like filtering water, stabilizing substrate, and creating hard structure for epibionts. Cultured bivalves are also economically important, supporting thousands of aquaculture jobs nationwide and providing valuable protein sources for our growing human population. However, recent shifts in the environment such as temperature, ocean acidification, hypoxia, and extreme environmental variation have greatly affected bivalve physiology, reproduction, and survival across multiple lifestages. Bivalves in the Northeast Pacific are increasingly vulnerable climate change related stressors like intensifying upwelling and weather extremes, defined stratification, and unique geography which causes distinct spatial and seasonal variation. I seek to investigate if higher degrees of phenotypic plasticity and parental carryover will have the potential to improve bivalve's fitness and tolerance as climate change progresses. My goal is to evaluate plastic capacity by taking a multi-method approach to assessing the physiological metrics of several important bivalve species, using both field and laboratory experiments. Early lifestages are greatly influenced by parental environmental history leading to carryover effects, favoring phenotypes that have a higher likelihood of surviving. In addition to natural selection in the wild, commercial and restoration aquaculturists may select for beneficial phenotypes in adults and offspring which would yield the most desirable characteristics. In our experiment, I focus on three different species: the purple-hinge rock scallop Crassadoma gigantea, the Mediterranean mussels Mytilus galloprovincialis, and the Olympia oyster Ostrea lurida. By choosing a suite of native and non-native, inter- and subtidal species, I hope to obtain a broad snapshot of physiological responses to help restore vulnerable species and maximize quality of farmed product. Chapter 1 examines physiological responses of the scallop C. gigantea to climate change related stressors in the laboratory. I conducted a full factorial laboratory experiment, manipulating pCO2 and temperature to mimic current and future ocean acidification and warming levels. After six weeks of acclimation, I found that stressors reduced shell strength and periostracum (outer shell layer) density. Only acidification affected lipids, and fatty acid content varied between treatments. I was the first to quantify microbial composition of a bivalve under multiple stressors and I found differences in the microbiome, especially with temperature stress. Chapter 2 explores physiological responses of C. gigantea and M. galloprovincialis in a six-month field acclimatation experiment. Shellfish were deployed in cages in Puget Sound, Washington at either 5 or 30 m below the surface. I found that environmental gradients varied seasonally and spatially and affected growth, shell strength, and isotopic signatures. There were differences between the two species, namely with shell strength and δ13C. I found that no one depth or time period yielded the most desirable traits for culturing, and I highlight the concerning patterns in Puget Sound's most productive region. In Chapter 3, I took my research one step further by introducing a spatial component to a one-year field experiment. I outplanted O. lurida in cages at 5 m depth in three different locations in Puget Sound, one of which also had a 20 m depth. Each of these locations had an oceanographic monitoring buoy which allowed me to couple physiological data with high-resolution environmental data. I spawned the oysters to test parental carryover and found evidence in growth rates of larvae, which when acclimated to high temperatures, mirrored their parents. Interestingly, larval survival did not coincide with growth, and through respirometry, I found that 20°C may be a bottleneck for this lifestage. Adult oyster growth, isotopic signatures, and gametogenesis were affected by both seasonal and spatial field conditions. Metabolic responses to pH and temperature depending on recent acclimatization history. This research shows evidence of strong adaptive plasticity which was demonstrated by energetic trade-offs and parental carryover. Chapter 4 acclimatized M. galloprovincialis in the field in a similar fashion to O. lurida. Growth, shell strength, and isotopes were all affected by season and site. Similar to oysters, acute metabolic rate of each site and season was affected differently between pH and temperature. Shellfish covered in Chapter 3/4 have a high degree of plasticity and results are useful to restoration (oyster) and commercial (mussel) aquaculturists to create selective breeding programs that will withstand climate change. Results of this dissertation demonstrate the rapid degree of phenotypic plasticity and capacity for parental carryover in field and laboratory setting though a wide array of physiological analysis. Outcomes of this research add to the limited but growing body of literature about multiple-stressors and field experiments, and indents to assist aquaculturists as climate change progresses.
Electronic reproduction.
Ann Arbor, Mich. :
ProQuest,
2023
Mode of access: World Wide Web
ISBN: 9798351439495Subjects--Topical Terms:
518431
Physiology.
Subjects--Index Terms:
AquacultureIndex Terms--Genre/Form:
542853
Electronic books.
Phenotypic Plasticity in Economically and Ecologically Important Bivalves in Response to Changing Environments.
LDR
:06589nmm a2200397K 4500
001
2354843
005
20230505090437.5
006
m o d
007
cr mn ---uuuuu
008
241011s2022 xx obm 000 0 eng d
020
$a
9798351439495
035
$a
(MiAaPQ)AAI29067531
035
$a
AAI29067531
040
$a
MiAaPQ
$b
eng
$c
MiAaPQ
$d
NTU
100
1
$a
Alma, Lindsay.
$3
3695218
245
1 0
$a
Phenotypic Plasticity in Economically and Ecologically Important Bivalves in Response to Changing Environments.
264
0
$c
2022
300
$a
1 online resource (223 pages)
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
500
$a
Source: Dissertations Abstracts International, Volume: 84-04, Section: B.
500
$a
Advisor: Padilla-Gamino, Jacqueline.
502
$a
Thesis (Ph.D.)--University of Washington, 2022.
504
$a
Includes bibliographical references
520
$a
Marine bivalves are ecologically important, providing ecosystem services like filtering water, stabilizing substrate, and creating hard structure for epibionts. Cultured bivalves are also economically important, supporting thousands of aquaculture jobs nationwide and providing valuable protein sources for our growing human population. However, recent shifts in the environment such as temperature, ocean acidification, hypoxia, and extreme environmental variation have greatly affected bivalve physiology, reproduction, and survival across multiple lifestages. Bivalves in the Northeast Pacific are increasingly vulnerable climate change related stressors like intensifying upwelling and weather extremes, defined stratification, and unique geography which causes distinct spatial and seasonal variation. I seek to investigate if higher degrees of phenotypic plasticity and parental carryover will have the potential to improve bivalve's fitness and tolerance as climate change progresses. My goal is to evaluate plastic capacity by taking a multi-method approach to assessing the physiological metrics of several important bivalve species, using both field and laboratory experiments. Early lifestages are greatly influenced by parental environmental history leading to carryover effects, favoring phenotypes that have a higher likelihood of surviving. In addition to natural selection in the wild, commercial and restoration aquaculturists may select for beneficial phenotypes in adults and offspring which would yield the most desirable characteristics. In our experiment, I focus on three different species: the purple-hinge rock scallop Crassadoma gigantea, the Mediterranean mussels Mytilus galloprovincialis, and the Olympia oyster Ostrea lurida. By choosing a suite of native and non-native, inter- and subtidal species, I hope to obtain a broad snapshot of physiological responses to help restore vulnerable species and maximize quality of farmed product. Chapter 1 examines physiological responses of the scallop C. gigantea to climate change related stressors in the laboratory. I conducted a full factorial laboratory experiment, manipulating pCO2 and temperature to mimic current and future ocean acidification and warming levels. After six weeks of acclimation, I found that stressors reduced shell strength and periostracum (outer shell layer) density. Only acidification affected lipids, and fatty acid content varied between treatments. I was the first to quantify microbial composition of a bivalve under multiple stressors and I found differences in the microbiome, especially with temperature stress. Chapter 2 explores physiological responses of C. gigantea and M. galloprovincialis in a six-month field acclimatation experiment. Shellfish were deployed in cages in Puget Sound, Washington at either 5 or 30 m below the surface. I found that environmental gradients varied seasonally and spatially and affected growth, shell strength, and isotopic signatures. There were differences between the two species, namely with shell strength and δ13C. I found that no one depth or time period yielded the most desirable traits for culturing, and I highlight the concerning patterns in Puget Sound's most productive region. In Chapter 3, I took my research one step further by introducing a spatial component to a one-year field experiment. I outplanted O. lurida in cages at 5 m depth in three different locations in Puget Sound, one of which also had a 20 m depth. Each of these locations had an oceanographic monitoring buoy which allowed me to couple physiological data with high-resolution environmental data. I spawned the oysters to test parental carryover and found evidence in growth rates of larvae, which when acclimated to high temperatures, mirrored their parents. Interestingly, larval survival did not coincide with growth, and through respirometry, I found that 20°C may be a bottleneck for this lifestage. Adult oyster growth, isotopic signatures, and gametogenesis were affected by both seasonal and spatial field conditions. Metabolic responses to pH and temperature depending on recent acclimatization history. This research shows evidence of strong adaptive plasticity which was demonstrated by energetic trade-offs and parental carryover. Chapter 4 acclimatized M. galloprovincialis in the field in a similar fashion to O. lurida. Growth, shell strength, and isotopes were all affected by season and site. Similar to oysters, acute metabolic rate of each site and season was affected differently between pH and temperature. Shellfish covered in Chapter 3/4 have a high degree of plasticity and results are useful to restoration (oyster) and commercial (mussel) aquaculturists to create selective breeding programs that will withstand climate change. Results of this dissertation demonstrate the rapid degree of phenotypic plasticity and capacity for parental carryover in field and laboratory setting though a wide array of physiological analysis. Outcomes of this research add to the limited but growing body of literature about multiple-stressors and field experiments, and indents to assist aquaculturists as climate change progresses.
533
$a
Electronic reproduction.
$b
Ann Arbor, Mich. :
$c
ProQuest,
$d
2023
538
$a
Mode of access: World Wide Web
650
4
$a
Physiology.
$3
518431
650
4
$a
Biology.
$3
522710
653
$a
Aquaculture
653
$a
Bivalve
653
$a
Climate change
653
$a
Ocean acidification
653
$a
Physiology
653
$a
Reproduction
655
7
$a
Electronic books.
$2
lcsh
$3
542853
690
$a
0719
690
$a
0306
710
2
$a
ProQuest Information and Learning Co.
$3
783688
710
2
$a
University of Washington.
$b
Aquatic and Fishery Sciences.
$3
2093042
773
0
$t
Dissertations Abstracts International
$g
84-04B.
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=29067531
$z
click for full text (PQDT)
based on 0 review(s)
Location:
ALL
電子資源
Year:
Volume Number:
Items
1 records • Pages 1 •
1
Inventory Number
Location Name
Item Class
Material type
Call number
Usage Class
Loan Status
No. of reservations
Opac note
Attachments
W9477199
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
On shelf
0
1 records • Pages 1 •
1
Multimedia
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login