Language:
English
繁體中文
Help
回圖書館首頁
手機版館藏查詢
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
Linked to FindBook
Google Book
Amazon
博客來
Impact of Agricultural Management and Microbial Inoculation on Soybean (Glycine max) and Its Associated Microbiome.
Record Type:
Electronic resources : Monograph/item
Title/Author:
Impact of Agricultural Management and Microbial Inoculation on Soybean (Glycine max) and Its Associated Microbiome./
Author:
Longley, Reid.
Description:
1 online resource (271 pages)
Notes:
Source: Dissertations Abstracts International, Volume: 83-11, Section: B.
Contained By:
Dissertations Abstracts International83-11B.
Subject:
Microbiology. -
Online resource:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=29206430click for full text (PQDT)
ISBN:
9798438746027
Impact of Agricultural Management and Microbial Inoculation on Soybean (Glycine max) and Its Associated Microbiome.
Longley, Reid.
Impact of Agricultural Management and Microbial Inoculation on Soybean (Glycine max) and Its Associated Microbiome.
- 1 online resource (271 pages)
Source: Dissertations Abstracts International, Volume: 83-11, Section: B.
Thesis (Ph.D.)--Michigan State University, 2022.
Includes bibliographical references
Soybean (Glycine max) is a globally important crop with uses as food, cooking oil livestock feed, and biodiesel. Soybean can be considered holobionts because they host diverse microbiomes which extend plant genotypes and phenotypes through various microbial functions such as nitrogen fixation and increased disease resistance. My research focused on assessing the impact of three agricultural management strategies on the soybean holobiont.Soybean cropping systems can be managed using various strategies, including conventional tillage, no-till, and organic management regimes. These management systems have been shown to impact the microbiomes of soybean-associated soils, however, their impacts on plant-associated microbiomes are still not well understood. In this study, I assessed the impact of conventional, no-till, and organic management treatments on soybean microbiomes at Michigan State's Kellogg Biological Station Long-Term Ecological Research site (KBS LTER). I found that management impacted microbiome composition and diversity in soil, roots, stems, and leaves and that this impact persisted throughout the season. Additionally, when comparing the same soybean genotype grown in conventional and no-till management systems, tillage regime impacted the microbiome throughout the plant and the growing season. This effect impacted microbial taxa which are likely to be plant beneficial, including nitrogen fixing Bradyrhizobium.Another important management tool that is expected to impact plant-associated microbial communities is the application of foliar fungicides. While fungicides are known to protect plants from particular fungal pathogens, non-target impacts of fungicides on crop microbiomes, and the impact of management on microbiome recovery are not well understood. To address this knowledge gap, I assessed the impact of foliar fungicide application on the maize (Headline® fungicide, 2017) and soybean (Delaro® fungicide, 2018) microbiomes in conventional and no-till plots at the KBS LTER. I found that fungicide applications have a non-target impact on Tremellomycete yeasts in the phyllosphere and this impact was greater in soybean than maize. Co-occurrence network analysis and random forest modelling indicated that changes in fungal communities may lead to indirect impacts on prokaryotic communities in the phyllosphere. Importantly, this work demonstrated that phyllosphere communities of soybeans under no-till management had greater recovery from fungicide disturbance. This novel finding exemplifies how tillage regime can impact phyllosphere microbiomes and their responses to disturbance.Microbial inoculants in agriculture have long been used for biocontrol of pathogens, but there is also interest in their use to dampen the impacts of abiotic stress including drought. In this study, I tested whether inoculating soybeans with hub taxa identified through network analysis from no-till soybean root microbiome data from the KBS LTER could provide protection against water limitation. Soybean seedlings were enriched in consortia of hub bacteria and fungi and were grown in no-till field soil. Seedlings were then exposed to low-moisture stress, and plant phenotypes, plant gene expression, and amplicon sequencing of microbial DNA and cDNA were assessed throughout the stress period. Inoculation increased plant growth, nodule numbers, and led to increased expression of nodulation-associated genes. 16S sequencing of cDNA revealed higher levels Bradyrhizobium in inoculated samples. These results indicate that inoculation with hub microbes can benefit soybean plants, possibly through interaction with other microbes, interaction with the plant, or both. In summary, fungicide, tillage, and inoculation all impact the soybean microbiome, indicating that management choices impact the entire holobiont.
Electronic reproduction.
Ann Arbor, Mich. :
ProQuest,
2023
Mode of access: World Wide Web
ISBN: 9798438746027Subjects--Topical Terms:
536250
Microbiology.
Subjects--Index Terms:
BradyrhizobiumIndex Terms--Genre/Form:
542853
Electronic books.
Impact of Agricultural Management and Microbial Inoculation on Soybean (Glycine max) and Its Associated Microbiome.
LDR
:05166nmm a2200361K 4500
001
2353724
005
20230313091334.5
006
m o d
007
cr mn ---uuuuu
008
241011s2022 xx obm 000 0 eng d
020
$a
9798438746027
035
$a
(MiAaPQ)AAI29206430
035
$a
AAI29206430
040
$a
MiAaPQ
$b
eng
$c
MiAaPQ
$d
NTU
100
1
$a
Longley, Reid.
$3
3694054
245
1 0
$a
Impact of Agricultural Management and Microbial Inoculation on Soybean (Glycine max) and Its Associated Microbiome.
264
0
$c
2022
300
$a
1 online resource (271 pages)
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
500
$a
Source: Dissertations Abstracts International, Volume: 83-11, Section: B.
500
$a
Advisor: Bonito, Gregory.
502
$a
Thesis (Ph.D.)--Michigan State University, 2022.
504
$a
Includes bibliographical references
520
$a
Soybean (Glycine max) is a globally important crop with uses as food, cooking oil livestock feed, and biodiesel. Soybean can be considered holobionts because they host diverse microbiomes which extend plant genotypes and phenotypes through various microbial functions such as nitrogen fixation and increased disease resistance. My research focused on assessing the impact of three agricultural management strategies on the soybean holobiont.Soybean cropping systems can be managed using various strategies, including conventional tillage, no-till, and organic management regimes. These management systems have been shown to impact the microbiomes of soybean-associated soils, however, their impacts on plant-associated microbiomes are still not well understood. In this study, I assessed the impact of conventional, no-till, and organic management treatments on soybean microbiomes at Michigan State's Kellogg Biological Station Long-Term Ecological Research site (KBS LTER). I found that management impacted microbiome composition and diversity in soil, roots, stems, and leaves and that this impact persisted throughout the season. Additionally, when comparing the same soybean genotype grown in conventional and no-till management systems, tillage regime impacted the microbiome throughout the plant and the growing season. This effect impacted microbial taxa which are likely to be plant beneficial, including nitrogen fixing Bradyrhizobium.Another important management tool that is expected to impact plant-associated microbial communities is the application of foliar fungicides. While fungicides are known to protect plants from particular fungal pathogens, non-target impacts of fungicides on crop microbiomes, and the impact of management on microbiome recovery are not well understood. To address this knowledge gap, I assessed the impact of foliar fungicide application on the maize (Headline® fungicide, 2017) and soybean (Delaro® fungicide, 2018) microbiomes in conventional and no-till plots at the KBS LTER. I found that fungicide applications have a non-target impact on Tremellomycete yeasts in the phyllosphere and this impact was greater in soybean than maize. Co-occurrence network analysis and random forest modelling indicated that changes in fungal communities may lead to indirect impacts on prokaryotic communities in the phyllosphere. Importantly, this work demonstrated that phyllosphere communities of soybeans under no-till management had greater recovery from fungicide disturbance. This novel finding exemplifies how tillage regime can impact phyllosphere microbiomes and their responses to disturbance.Microbial inoculants in agriculture have long been used for biocontrol of pathogens, but there is also interest in their use to dampen the impacts of abiotic stress including drought. In this study, I tested whether inoculating soybeans with hub taxa identified through network analysis from no-till soybean root microbiome data from the KBS LTER could provide protection against water limitation. Soybean seedlings were enriched in consortia of hub bacteria and fungi and were grown in no-till field soil. Seedlings were then exposed to low-moisture stress, and plant phenotypes, plant gene expression, and amplicon sequencing of microbial DNA and cDNA were assessed throughout the stress period. Inoculation increased plant growth, nodule numbers, and led to increased expression of nodulation-associated genes. 16S sequencing of cDNA revealed higher levels Bradyrhizobium in inoculated samples. These results indicate that inoculation with hub microbes can benefit soybean plants, possibly through interaction with other microbes, interaction with the plant, or both. In summary, fungicide, tillage, and inoculation all impact the soybean microbiome, indicating that management choices impact the entire holobiont.
533
$a
Electronic reproduction.
$b
Ann Arbor, Mich. :
$c
ProQuest,
$d
2023
538
$a
Mode of access: World Wide Web
650
4
$a
Microbiology.
$3
536250
650
4
$a
Plant sciences.
$3
3173832
653
$a
Bradyrhizobium
653
$a
Soybean
653
$a
Holobionts
655
7
$a
Electronic books.
$2
lcsh
$3
542853
690
$a
0410
690
$a
0479
710
2
$a
ProQuest Information and Learning Co.
$3
783688
710
2
$a
Michigan State University.
$b
Microbiology and Molecular Genetics - Doctor of Philosophy.
$3
3560356
773
0
$t
Dissertations Abstracts International
$g
83-11B.
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=29206430
$z
click for full text (PQDT)
based on 0 review(s)
Location:
ALL
電子資源
Year:
Volume Number:
Items
1 records • Pages 1 •
1
Inventory Number
Location Name
Item Class
Material type
Call number
Usage Class
Loan Status
No. of reservations
Opac note
Attachments
W9476080
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
On shelf
0
1 records • Pages 1 •
1
Multimedia
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login