語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
FindBook
Google Book
Amazon
博客來
Nonviral vector strategies for ultrasound targeted microbubble destruction-mediated hepatic gene therapy.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Nonviral vector strategies for ultrasound targeted microbubble destruction-mediated hepatic gene therapy./
作者:
Anderson, Cynthia Dawn.
出版者:
Ann Arbor : ProQuest Dissertations & Theses, : 2014,
面頁冊數:
320 p.
附註:
Source: Dissertations Abstracts International, Volume: 76-06, Section: B.
Contained By:
Dissertations Abstracts International76-06B.
標題:
Molecular biology. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=3582903
ISBN:
9781321239829
Nonviral vector strategies for ultrasound targeted microbubble destruction-mediated hepatic gene therapy.
Anderson, Cynthia Dawn.
Nonviral vector strategies for ultrasound targeted microbubble destruction-mediated hepatic gene therapy.
- Ann Arbor : ProQuest Dissertations & Theses, 2014 - 320 p.
Source: Dissertations Abstracts International, Volume: 76-06, Section: B.
Thesis (Ph.D.)--University of Hawai'i at Manoa, 2014.
This item must not be added to any third party search indexes.
The goal of this research was to identify an improved delivery system and vectors for noninvasive gene therapy of Hemophilia B. Ultrasound Targeted Microbubble Destruction (UTMD) is a platform technology that can deliver gene-expression vectors bound to the shells of lipid microbubbles to organs accessible to ultrasound. In UTMD, the DNA-loaded microbubbles are injected intravenously and are disrupted at the target organ by acoustic cavitation at a resonant frequency of the bubbles, resulting in delivery of expression plasmids to the target organ. Our aim was to apply UTMD to the hepatic delivery of conventional (pcDNA3), piggyBac (pmGENIE) and Sleeping Beauty (SB100x) transposon-based, and minicircle (MC) DNA vectors. We measured reporter and human blood coagulation factor IX transgene expression in the mouse liver and plasma driven by constitutive and tissue-specific promoters. In vitro we demonstrated a ten-fold increase in the level of reporter expression in HEK293 cells after transfection with a piggyBac transposase system over three weeks. In C57Bl/6 mice, we first compared pmGENIE2-luciferase to pcDNA3-luciferase, and observed UTMD-mediated liver-specific expression of pmGENIE2 for an average of 24 days (n=12), compared to 4 days with the pcDNA3 (n=7) (p=0.037). Expression of the reporter constructs was initially predominately located proximal to blood vessels while expression past three days was more evenly distributed through the parenchyma of the liver. We also used nonrestrictive linear amplification mediated (nrLAM) PCR to evaluate the genomic integration sites of the pmGENIE reporter vectors in vitro and in vivo. Chromosomal integration sites were randomly distributed in genomic DNA samples isolated from mouse 3T3 cells transfected with pmGENIE3-eGFP in vitro but were predominately targeted to specific chromosomes in livers from C57BL/6 mice transfected with pmGENIE3-luc (n=13) in vivo . Thus, the UTMD delivery of transposon-based vectors has revealed an unexpected tropism for certain murine chromosomal sites in vivo that is not seen in vitro. We delivered various reporter constructs to the liver by UTMD and compared reporter expression levels and hepatic localization over two weeks. We initially observed robust transgene levels from all vectors, however, the intensity of expression remained 10 to 1000-fold stronger in mice from the p mGENIE3-luc and liver-specific pZY53-luc treatments compared to pcDNA3, SB100X, or minicircle constructs. The greatest hepatic specificity of transgene expression was observed for the alpha1 antitrypsin promoter-driven pZY53-luc, which supports the use of vectors with tissue-specific promoters to further enhance UTMD site-specificity. We also evaluated these vectors with liver-specific promoters and the human factor IX (FIX) gene in HepG2 cells and in C57Bl/6 mice. The optimal hFIX vectors (pZY53-hFIX and pmGENIE3-hFIX) were delivered to the livers of FIX deficient (-/-) mice to determine whether we could ameliorate the Hemophilia B coagulopathy. Immunofluorescence and bioluminescence imaging demonstrated successful UTMD-mediated hepatic transfection in the FIX (-/-) mice from co-deliveries of the hFIX vectors (pZY53-hFIX or pmGENIE3-hFIX) with the liver-specific reporter, pZY53-luc. Immunofluorescence assays performed on livers harvested one, four or five, and twelve days after UTMD revealed hFIX expression in hepatocytes, predominantly surrounding hepatic blood vessels. We analyzed plasma collected at the same time-points from FIX (-/-) mice after treatment with pZY53-hFIX and p mGENIE3-hFIX and detected human FIX expression by Western blotting indicating that the transfected mouse hepatocytes were secreting hFIX. Activated partial thromboplastin time (APTT) assays performed on treated plasma samples showed significantly reduced clotting times compared to untreated mutant control plasma four to five days (p=0.001 and p=0.012 for pZY53-hFIX and p mGENIE3-hFIX, respectively) and twelve days (p=0.02 and p=0.001 for pZY53-hFIX and pmGENIE3-hFIX, respectively) after UTMD. Together these data show that our method of UTMD-mediated hFIX delivery resulted in successful transfection and secretion of hFIX from the livers of FIX (-/-) mice. These results demonstrate potentially therapeutic levels of FIX expression and support consideration of UTMD as an approach for hepatic gene therapy. Overall, the combination of UTMD and transposon-based expression constructs provides a minimally invasive strategy for delivery of therapeutic genes to the liver. This may be useful for the treatment of many hepatic gene deficiency disorders, including Hemophilia B.
ISBN: 9781321239829Subjects--Topical Terms:
517296
Molecular biology.
Subjects--Index Terms:
Factor IX
Nonviral vector strategies for ultrasound targeted microbubble destruction-mediated hepatic gene therapy.
LDR
:06033nmm a2200409 4500
001
2348157
005
20220906075218.5
008
241004s2014 ||||||||||||||||| ||eng d
020
$a
9781321239829
035
$a
(MiAaPQ)AAI3582903
035
$a
AAI3582903
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Anderson, Cynthia Dawn.
$3
3687475
245
1 0
$a
Nonviral vector strategies for ultrasound targeted microbubble destruction-mediated hepatic gene therapy.
260
1
$a
Ann Arbor :
$b
ProQuest Dissertations & Theses,
$c
2014
300
$a
320 p.
500
$a
Source: Dissertations Abstracts International, Volume: 76-06, Section: B.
500
$a
Publisher info.: Dissertation/Thesis.
500
$a
Advisor: Shohet, Ralph.
502
$a
Thesis (Ph.D.)--University of Hawai'i at Manoa, 2014.
506
$a
This item must not be added to any third party search indexes.
506
$a
This item must not be sold to any third party vendors.
520
$a
The goal of this research was to identify an improved delivery system and vectors for noninvasive gene therapy of Hemophilia B. Ultrasound Targeted Microbubble Destruction (UTMD) is a platform technology that can deliver gene-expression vectors bound to the shells of lipid microbubbles to organs accessible to ultrasound. In UTMD, the DNA-loaded microbubbles are injected intravenously and are disrupted at the target organ by acoustic cavitation at a resonant frequency of the bubbles, resulting in delivery of expression plasmids to the target organ. Our aim was to apply UTMD to the hepatic delivery of conventional (pcDNA3), piggyBac (pmGENIE) and Sleeping Beauty (SB100x) transposon-based, and minicircle (MC) DNA vectors. We measured reporter and human blood coagulation factor IX transgene expression in the mouse liver and plasma driven by constitutive and tissue-specific promoters. In vitro we demonstrated a ten-fold increase in the level of reporter expression in HEK293 cells after transfection with a piggyBac transposase system over three weeks. In C57Bl/6 mice, we first compared pmGENIE2-luciferase to pcDNA3-luciferase, and observed UTMD-mediated liver-specific expression of pmGENIE2 for an average of 24 days (n=12), compared to 4 days with the pcDNA3 (n=7) (p=0.037). Expression of the reporter constructs was initially predominately located proximal to blood vessels while expression past three days was more evenly distributed through the parenchyma of the liver. We also used nonrestrictive linear amplification mediated (nrLAM) PCR to evaluate the genomic integration sites of the pmGENIE reporter vectors in vitro and in vivo. Chromosomal integration sites were randomly distributed in genomic DNA samples isolated from mouse 3T3 cells transfected with pmGENIE3-eGFP in vitro but were predominately targeted to specific chromosomes in livers from C57BL/6 mice transfected with pmGENIE3-luc (n=13) in vivo . Thus, the UTMD delivery of transposon-based vectors has revealed an unexpected tropism for certain murine chromosomal sites in vivo that is not seen in vitro. We delivered various reporter constructs to the liver by UTMD and compared reporter expression levels and hepatic localization over two weeks. We initially observed robust transgene levels from all vectors, however, the intensity of expression remained 10 to 1000-fold stronger in mice from the p mGENIE3-luc and liver-specific pZY53-luc treatments compared to pcDNA3, SB100X, or minicircle constructs. The greatest hepatic specificity of transgene expression was observed for the alpha1 antitrypsin promoter-driven pZY53-luc, which supports the use of vectors with tissue-specific promoters to further enhance UTMD site-specificity. We also evaluated these vectors with liver-specific promoters and the human factor IX (FIX) gene in HepG2 cells and in C57Bl/6 mice. The optimal hFIX vectors (pZY53-hFIX and pmGENIE3-hFIX) were delivered to the livers of FIX deficient (-/-) mice to determine whether we could ameliorate the Hemophilia B coagulopathy. Immunofluorescence and bioluminescence imaging demonstrated successful UTMD-mediated hepatic transfection in the FIX (-/-) mice from co-deliveries of the hFIX vectors (pZY53-hFIX or pmGENIE3-hFIX) with the liver-specific reporter, pZY53-luc. Immunofluorescence assays performed on livers harvested one, four or five, and twelve days after UTMD revealed hFIX expression in hepatocytes, predominantly surrounding hepatic blood vessels. We analyzed plasma collected at the same time-points from FIX (-/-) mice after treatment with pZY53-hFIX and p mGENIE3-hFIX and detected human FIX expression by Western blotting indicating that the transfected mouse hepatocytes were secreting hFIX. Activated partial thromboplastin time (APTT) assays performed on treated plasma samples showed significantly reduced clotting times compared to untreated mutant control plasma four to five days (p=0.001 and p=0.012 for pZY53-hFIX and p mGENIE3-hFIX, respectively) and twelve days (p=0.02 and p=0.001 for pZY53-hFIX and pmGENIE3-hFIX, respectively) after UTMD. Together these data show that our method of UTMD-mediated hFIX delivery resulted in successful transfection and secretion of hFIX from the livers of FIX (-/-) mice. These results demonstrate potentially therapeutic levels of FIX expression and support consideration of UTMD as an approach for hepatic gene therapy. Overall, the combination of UTMD and transposon-based expression constructs provides a minimally invasive strategy for delivery of therapeutic genes to the liver. This may be useful for the treatment of many hepatic gene deficiency disorders, including Hemophilia B.
590
$a
School code: 0085.
650
4
$a
Molecular biology.
$3
517296
650
4
$a
Cellular biology.
$3
3172791
653
$a
Factor IX
653
$a
Hemophilia B
653
$a
Hepatic gene therapy
653
$a
Microbubbles
653
$a
Nonviral vectors
653
$a
Transposase
653
$a
Ultrasound
690
$a
0307
690
$a
0379
710
2
$a
University of Hawai'i at Manoa.
$b
Cell and Molecular Biology.
$3
3687476
773
0
$t
Dissertations Abstracts International
$g
76-06B.
790
$a
0085
791
$a
Ph.D.
792
$a
2014
793
$a
English
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=3582903
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9470595
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入